Phase-field-crystal models and mechanical equilibrium

被引:44
|
作者
Heinonen, V. [1 ]
Achim, C. V. [2 ]
Elder, K. R. [3 ]
Buyukdagli, S. [1 ]
Ala-Nissila, T. [1 ,4 ]
机构
[1] Aalto Univ, Sch Sci, COMP Ctr Excellence, Dept Appl Phys, FI-00076 Aalto, Finland
[2] Univ Dusseldorf, Inst Theoret Phys Weiche Mat 2, Dusseldorf, Germany
[3] Oakland Univ, Dept Phys, Rochester, MI 48309 USA
[4] Brown Univ, Dept Phys, Providence, RI 02912 USA
来源
PHYSICAL REVIEW E | 2014年 / 89卷 / 03期
基金
芬兰科学院;
关键词
DENSITY-FUNCTIONAL THEORY; SIMULATIONS;
D O I
10.1103/PhysRevE.89.032411
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Phase-field-crystal (PFC) models constitute a field theoretical approach to solidification, melting, and related phenomena at atomic length and diffusive time scales. One of the advantages of these models is that they naturally contain elastic excitations associated with strain in crystalline bodies. However, instabilities that are diffusively driven towards equilibrium are often orders of magnitude slower than the dynamics of the elastic excitations, and are thus not included in the standard PFC model dynamics. We derive a method to isolate the time evolution of the elastic excitations from the diffusive dynamics in the PFC approach and set up a two-stage process, in which elastic excitations are equilibrated separately. This ensures mechanical equilibrium at all times. We show concrete examples demonstrating the necessity of the separation of the elastic and diffusive time scales. In the small-deformation limit this approach is shown to agree with the theory of linear elasticity.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Thermodynamics of bcc metals in phase-field-crystal models
    Jaatinen, A.
    Achim, C. V.
    Elder, K. R.
    Ala-Nissila, T.
    PHYSICAL REVIEW E, 2009, 80 (03):
  • [2] Localized states in passive and active phase-field-crystal models
    Holl, Max Philipp
    Archer, Andrew J.
    Gurevich, Svetlana, V
    Knobloch, Edgar
    Ophaus, Lukas
    Thiele, Uwe
    IMA JOURNAL OF APPLIED MATHEMATICS, 2021, 86 (05) : 896 - 923
  • [3] Complex order parameter phase-field models derived from structural phase-field-crystal models
    Ofori-Opoku, Nana
    Stolle, Jonathan
    Huang, Zhi-Feng
    Provatas, Nikolas
    PHYSICAL REVIEW B, 2013, 88 (10)
  • [4] Statistics of grain growth: Experiment versus the phase-field-crystal and Mullins models
    La Boissoniere, Gabriel Martine
    Choksi, Rustum
    Barmak, Katayun
    Esedoglu, Selim
    MATERIALIA, 2019, 6
  • [5] Phase-field-crystal simulation of nonequilibrium crystal growth
    Tang, Sai
    Yu, Yan-Mei
    Wang, Jincheng
    Li, Junjie
    Wang, Zhijun
    Guo, Yaolin
    Zhou, Yaohe
    PHYSICAL REVIEW E, 2014, 89 (01):
  • [6] Phase-field-crystal model for fcc ordering
    Wu, Kuo-An
    Adland, Ari
    Karma, Alain
    PHYSICAL REVIEW E, 2010, 81 (06):
  • [7] Phase-field-crystal model for ordered crystals
    Alster, Eli
    Elder, K. R.
    Hoyt, Jeffrey J.
    Voorhees, Peter W.
    PHYSICAL REVIEW E, 2017, 95 (02)
  • [8] A phase-field-crystal model for liquid crystals
    Loewen, Hartmut
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (36)
  • [9] A phase-field-crystal approach to critical nuclei
    Backofen, R.
    Voigt, A.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (36)
  • [10] Phase-field-crystal study of solute trapping
    Humadi, Harith
    Hoyt, Jeffrey J.
    Provatas, Nikolas
    PHYSICAL REVIEW E, 2013, 87 (02):