Two-level system in a one-mode quantum field: Numerical solution on the basis of the operator method

被引:94
作者
Feranchuk, ID
Komarov, LI
Ulyanenkov, AP
机构
[1] Department of Theoretical Physics, Belarussian State University, 220080 Minsk
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1996年 / 29卷 / 14期
关键词
D O I
10.1088/0305-4470/29/14/026
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Accurate eigenvalues and eigenfunctions of a two-level system interacting with a one-mode quantum field are calculated numerically. A special iteration procedure based on the operator method permits one to consider the solution within a wide range of the Hamiltonian parameters and to find the uniformly approximating analytical formula for the eigenvalues. Characteristic features of the model are considered, such as the level intersections, the population of the field states and the chaotization in the system through the doubling of the frequencies.
引用
收藏
页码:4035 / 4047
页数:13
相关论文
共 15 条
[1]  
Allen L., 1975, OPTICAL RESONANCE 2
[2]   THE OPERATOR METHOD OF THE APPROXIMATE DESCRIPTION OF THE QUANTUM AND CLASSICAL-SYSTEMS [J].
FERANCHUK, ID ;
KOMAROV, LI .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (16) :3111-3133
[3]   THE OPERATOR METHOD OF THE APPROXIMATE SOLUTION OF THE SCHRODINGER-EQUATION [J].
FERANCHUK, ID ;
KOMAROV, LI .
PHYSICS LETTERS A, 1982, 88 (05) :211-214
[4]   OPERATOR METHOD IN THE PROBLEM OF QUANTUM ANHARMONIC-OSCILLATOR [J].
FERANCHUK, ID ;
KOMAROV, LI ;
NICHIPOR, IV ;
ULYANENKOV, AP .
ANNALS OF PHYSICS, 1995, 238 (02) :370-440
[5]   AN ANALYTICAL DESCRIPTION OF SOME QUANTUM-SYSTEMS IN PERIODIC EXTERNAL FIELDS AND QUASI-STATIONARY SYSTEMS [J].
FERANCHUK, ID ;
KOMAROV, LI ;
NECHIPOR, IV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (12) :3849-3860
[6]   QUANTUM CHAOS OF THE 2-LEVEL ATOM [J].
GRAHAM, R ;
HOHNERBACH, M .
PHYSICS LETTERS A, 1984, 101 (02) :61-65
[7]  
*HTF, 1953, HIGH TRANSC FUNCT
[8]  
JAYNES E, 1963, P IEEE, V51, P1963
[9]   EXACT ISOLATED SOLUTIONS FOR THE CLASS OF QUANTUM OPTICAL-SYSTEMS [J].
KUS, M ;
LEWENSTEIN, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (02) :305-318
[10]   SQUEEZING IN THE JAYNES-CUMMINGS MODEL WITHOUT THE RWA [J].
LAIS, P ;
STEIMLE, T .
OPTICS COMMUNICATIONS, 1990, 78 (5-6) :346-350