Arithmetic Average Based Multi-sensor TPHD Filter for Distributed Multi-target Tracking

被引:0
作者
Fu, Jiazheng [1 ]
Chai, Lei [1 ]
Zhang, Boxiang [1 ]
Yi, Wei [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu, Peoples R China
来源
2022 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS (MFI) | 2022年
基金
中国国家自然科学基金;
关键词
Distributed multi-target tracking; trajectory probability hypothesis density filter; information fusion; weighted arithmetic average; MULTI-BERNOULLI FILTER; RANDOM FINITE SETS; PHD FILTERS; FUSION; CONSENSUS;
D O I
10.1109/MFI55806.2022.9913841
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Compared with the probability hypothesis density (PHD) filter for sets of targets, the trajectory probability hypothesis density (TPHD) filter can estimate the sets of trajectories in a principle way and has better target tracking performance. This paper aims at extending the TPHD filter to distributed multi-target tracking (MTT) for the multi-sensor system. However, in the trajectory set based distributed fusion implementation, the trajectory state difference phenomenon makes the clustering and merging techniques unfeasible in trajectory state space. To address this problem, this paper studies the space decomposition of the TPHD and proposes a distributed MTT method based on the TPHD filter with the weighted arithmetic average (WAA) fusion rule. First, we prove the rationality of the space decomposition in the posterior density of the TPHD filter. Then, based on the proposed property, we derive the WAA fusion formulation of the TPHD filter by minimizing the weighted sum of Kullback-Leibler divergences (KLD) from local posterior densities, and develop the analytical Gaussian mixture (GM) implementation with the L-scan approximation. Numerical results demonstrate the efficacy of the proposed fusion method.
引用
收藏
页数:6
相关论文
共 39 条
[1]   Labeled Random Finite Sets and the Bayes Multi-Target Tracking Filter [J].
Ba-Ngu Vo ;
Ba-Tuong Vo ;
Dinh Phung .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (24) :6554-6567
[2]   Labeled Random Finite Sets and Multi-Object Conjugate Priors [J].
Ba-Tuong Vo ;
Ba-Ngu Vo .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (13) :3460-3475
[3]  
Bailey T., 2012, 2012 15th International Conference on Information Fusion (FUSION 2012), P1876
[4]  
Bar-Shalom Y., 1990, J Acoust Soc Am, V87
[5]   Kullback-Leibler average, consensus on probability densities, and distributed state estimation with guaranteed stability [J].
Battistelli, Giorgio ;
Chisci, Luigi .
AUTOMATICA, 2014, 50 (03) :707-718
[6]   Consensus CPHD Filter for Distributed Multitarget Tracking [J].
Battistelli, Giorgio ;
Chisci, Luigi ;
Fantacci, Claudio ;
Farina, Alfonso ;
Graziano, Antonio .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2013, 7 (03) :508-520
[7]   Multiple hypothesis tracking for multiple target tracking [J].
Blackman, SS .
IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2004, 19 (01) :5-18
[8]  
Clark D., 2010, SENSOR SIGNAL PROCES, P1
[9]   Kullback-Leibler Averaging for Multitarget Density Fusion [J].
Da, Kai ;
Li, Tiancheng ;
Zhu, Yongfeng ;
Fan, Hongqi ;
Fu, Qiang .
DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, 16TH INTERNATIONAL CONFERENCE, 2020, 1003 :253-261
[10]   A generalized S-D assignment algorithm for multisensor-multitarget state estimation [J].
Deb, S ;
Yeddanapudi, M ;
Pattipati, K ;
BarShalom, Y .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1997, 33 (02) :523-538