Modeling and Measurement of Geometrically Nonlinear Damping in a Microcantilever-Nanotube System

被引:37
作者
Jeong, Bongwon [1 ]
Cho, Hanna [2 ]
Yu, Min-Feng [3 ]
Vakakis, Alexander F. [1 ]
McFarland, Donald Michael [4 ]
Bergman, Lawrence A. [4 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[2] Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA
[3] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA
[4] Univ Illinois, Dept Aerosp Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
micro/nanomechanical resonator; nonlinear damping; nonlinear resonance; geometric nonlinearity; nanotubes; CARBON NANOTUBES; RESONATORS;
D O I
10.1021/nn402479d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nonlinear mechanical systems promise broadband resonance and instantaneous hysteretic switching that can be used for high sensitivity sensing. However, to introduce nonlinear resonances in widely used microcantilever systems, such as MM probes, requires driving the cantilever to an amplitude that is too large for any practical applications. We introduce a novel design for a microcantilever with a strong nonlinearity at small cantilever oscillation amplitude arising from the geometrical integration of a single BN nanotube. The dynamics of the system was modeled theoretically and confirmed experimentally. The system, besides providing a practical design of a nonlinear microcantilever-based probe, demonstrates also an effective method of studying the nonlinear damping properties of the attached nanotube. Beyond the typical linear mechanical damping, the nonlinear damping contribution from the attached nanotube was found to be essential for understanding the dynamical behavior of the designed system. Experimental results obtained through laser microvibrometry validated the developed model incorporating the nonlinear damping contribution.
引用
收藏
页码:8547 / 8553
页数:7
相关论文
共 27 条
[1]   Dynamic instabilities in coupled oscillators induced by geometrically nonlinear damping [J].
Andersen, David ;
Starosvetsky, Yuli ;
Vakakis, Alexander ;
Bergman, Lawrence .
NONLINEAR DYNAMICS, 2012, 67 (01) :807-827
[2]   Effect of fluids on the Q factor and resonance frequency of oscillating micrometer and nanometer scale beams -: art. no. 036307 [J].
Bhiladvala, RB ;
Wang, ZJ .
PHYSICAL REVIEW E, 2004, 69 (03) :036307-1
[3]   Electromechanical resonators from graphene sheets [J].
Bunch, J. Scott ;
van der Zande, Arend M. ;
Verbridge, Scott S. ;
Frank, Ian W. ;
Tanenbaum, David M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
SCIENCE, 2007, 315 (5811) :490-493
[4]  
Chen CY, 2009, NAT NANOTECHNOL, V4, P861, DOI [10.1038/NNANO.2009.267, 10.1038/nnano.2009.267]
[5]   Atomic-Scale Mass Sensing Using Carbon Nanotube Resonators [J].
Chiu, Hsin-Ying ;
Hung, Peter ;
Postma, Henk W. Ch. ;
Bockrath, Marc .
NANO LETTERS, 2008, 8 (12) :4342-4346
[6]   Nonlinear hardening and softening resonances in micromechanical cantilever-nanotube systems originated from nanoscale geometric nonlinearities [J].
Cho, Hanna ;
Jeong, Bongwon ;
Yu, Min-Feng ;
Vakakis, Alexander F. ;
McFarland, D. Michael ;
Bergman, Lawrence A. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2012, 49 (15-16) :2059-2065
[7]   Tunable, Broadband Nonlinear Nanomechanical Resonator [J].
Cho, Hanna ;
Yu, Min-Feng ;
Vakakis, Alexander F. ;
Bergman, Lawrence A. ;
McFarland, D. Michael .
NANO LETTERS, 2010, 10 (05) :1793-1798
[8]  
Eichler A, 2011, NAT NANOTECHNOL, V6, P339, DOI [10.1038/NNANO.2011.71, 10.1038/nnano.2011.71]
[9]   Mechanical detection of carbon nanotube resonator vibrations [J].
Garcia-Sanchez, D. ;
Paulo, A. San ;
Esplandiu, M. J. ;
Perez-Murano, F. ;
Forro, L. ;
Aguasca, A. ;
Bachtold, A. .
PHYSICAL REVIEW LETTERS, 2007, 99 (08)
[10]   Imaging mechanical vibrations in suspended graphene sheets [J].
Garcia-Sanchez, D. ;
van der Zande, A. M. ;
Paulo, A. San ;
Lassagne, B. ;
McEuen, P. L. ;
Bachtold, A. .
NANO LETTERS, 2008, 8 (05) :1399-1403