Positive radial solutions to a 'semilinear' equation involving the Pucci's operator

被引:58
作者
Felmer, PL [1 ]
Quaas, A [1 ]
机构
[1] Univ Chile, CNRS, Dept Ingn Matemat, UMR 2071, Santiago, Chile
关键词
Pucci's operator; degree theory; critical exponent; a priori estimates; radial solution;
D O I
10.1016/j.jde.2004.01.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we prove existence of positive radially symmetric solutions for the nonlinear elliptic equation M-lambda,Delta(+)(D(2)u) - gammau + f(u) = 0 in B-R, u = 0 on partial derivativeB(R), where M-lambda,Delta(+) denotes the Pucci's extremal operator with parameters 0<lambdaless than or equal toLambda and B-R is the ball of radius R in R-N, Ngreater than or equal to3. The result applies to a wide class of nonlinear functions f, including the important model cases: (i) gamma = 1 and f(s) = s(p), 1<p<p(*)(+). (ii) gamma = 0, f (s) = alphas +s(p), 1<p<p(*)(+) and 0less than or equal toalpha<mu(1)(+). Here p(*)(+) is critical exponent for M-lambda,Lambda(+) and mu(1)(+) is the first eigenvalue of M-lambda,Lambda(+) in B-R. Analogous results are obtained for the operator M-lambda,Lambda(-). (C) 2004 Published by Elsevier Inc.
引用
收藏
页码:376 / 393
页数:18
相关论文
共 14 条
[1]  
[Anonymous], 1995, FULLY NONLINEAR ELLI
[2]  
Avellaneda M., 1995, Applied Mathematical Finance, V2, P73, DOI DOI 10.1080/13504869500000005
[3]   ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
CAFFARELLI, LA ;
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :271-297
[4]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[5]   On the Liouville property for fully nonlinear equations [J].
Cutrì, A ;
Leoni, F .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (02) :219-245
[6]  
DEFIGUEIREDO DG, 1982, J MATH PURE APPL, V61, P41
[7]   On critical exponents for the Pucci's extremal operators [J].
Felmer, PL ;
Quaas, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (05) :843-865
[8]   Critical exponents for the Pucci's extremal operators [J].
Felmer, PL ;
Quaas, A .
COMPTES RENDUS MATHEMATIQUE, 2002, 335 (11) :909-914
[9]   GLOBAL AND LOCAL BEHAVIOR OF POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS [J].
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (04) :525-598
[10]   ON THE EXISTENCE OF POSITIVE SOLUTIONS OF SEMI-LINEAR ELLIPTIC-EQUATIONS [J].
LIONS, PL .
SIAM REVIEW, 1982, 24 (04) :441-467