GLOBAL SOLUTION TO THE THREE-DIMENSIONAL COMPRESSIBLE FLOW OF LIQUID CRYSTALS

被引:50
作者
Hu, Xianpeng [1 ]
Wu, Hao [2 ,3 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
基金
美国国家科学基金会;
关键词
compressible liquid crystal flow; global well-posedness; critical space; EXISTENCE; EQUATIONS;
D O I
10.1137/120898814
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Cauchy problem for the three-dimensional compressible flow of nematic liquid crystals is considered. Existence and uniqueness of the global strong solution are established in critical Besov spaces provided that the initial datum is close to an equilibrium state (1,0,(d) over cap) with a constant vector (d) over cap is an element of S-2. The global existence result is proved via the local well-posedness and uniform estimates for proper linearized systems with convective terms.
引用
收藏
页码:2678 / 2699
页数:22
相关论文
共 25 条
[22]   Approximation of liquid crystal flows [J].
Liu, C ;
Walkington, NJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (03) :725-741
[23]   Well-posedness and global attractors for liquid crystals on Riemannian manifolds [J].
Shkoller, S .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (5-6) :1103-1137
[24]   Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data [J].
Wang, Changyou .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 200 (01) :1-19
[25]   LONG-TIME BEHAVIOR FOR NONLINEAR HYDRODYNAMIC SYSTEM MODELING THE NEMATIC LIQUID CRYSTAL FLOWS [J].
Wu, Hao .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 26 (01) :379-396