GLOBAL SOLUTION TO THE THREE-DIMENSIONAL COMPRESSIBLE FLOW OF LIQUID CRYSTALS

被引:50
作者
Hu, Xianpeng [1 ]
Wu, Hao [2 ,3 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
基金
美国国家科学基金会;
关键词
compressible liquid crystal flow; global well-posedness; critical space; EXISTENCE; EQUATIONS;
D O I
10.1137/120898814
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Cauchy problem for the three-dimensional compressible flow of nematic liquid crystals is considered. Existence and uniqueness of the global strong solution are established in critical Besov spaces provided that the initial datum is close to an equilibrium state (1,0,(d) over cap) with a constant vector (d) over cap is an element of S-2. The global existence result is proved via the local well-posedness and uniform estimates for proper linearized systems with convective terms.
引用
收藏
页码:2678 / 2699
页数:22
相关论文
共 25 条
[1]  
Bahouri H., 2011, GRUNDLEHREN MATH WIS, V343
[2]   Ill-posedness of the Navier-Stokes equations in a critical space in 3D [J].
Bourgain, Jean ;
Pavlovic, Natasa .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (09) :2233-2247
[3]   Global existence in critical spaces for compressible Navier-Stokes equations [J].
Danchin, R .
INVENTIONES MATHEMATICAE, 2000, 141 (03) :579-614
[4]  
de Gennes G., 1993, The Physics of Liquid Crystals
[5]   COMPRESSIBLE HYDRODYNAMIC FLOW OF LIQUID CRYSTALS IN 1-D [J].
Ding, Shijin ;
Lin, Junyu ;
Wang, Changyou ;
Wen, Huanyao .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (02) :539-563
[6]   WEAK SOLUTION TO COMPRESSIBLE HYDRODYNAMIC FLOW OF LIQUID CRYSTALS IN DIMENSION ONE [J].
Ding, Shijin ;
Wang, Changyou ;
Wen, Huanyao .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 15 (02) :357-371
[7]  
ERICKSEN JL, 1987, RES MECH, V21, P381
[8]   CONSERVATION LAWS FOR LIQUID CRYSTALS [J].
ERICKSEN, JL .
TRANSACTIONS OF THE SOCIETY OF RHEOLOGY, 1961, 5 :23-34
[9]   ON THE NAVIER-STOKES INITIAL VALUE PROBLEM .1. [J].
FUJITA, H ;
KATO, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (04) :269-315
[10]   EXISTENCE AND PARTIAL REGULARITY OF STATIC LIQUID-CRYSTAL CONFIGURATIONS [J].
HARDT, R ;
KINDERLEHRER, D ;
LIN, FH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 105 (04) :547-570