Scaling laws for van der Waals interactions in nanostructured materials

被引:240
作者
Gobre, Vivekanand V. [1 ]
Tkatchenko, Alexandre [1 ]
机构
[1] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany
基金
欧洲研究理事会;
关键词
C-60; POLARIZABILITY; FORCES;
D O I
10.1038/ncomms3341
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Van der Waals interactions have a fundamental role in biology, physics and chemistry, in particular in the self-assembly and the ensuing function of nanostructured materials. Here we utilize an efficient microscopic method to demonstrate that van der Waals interactions in nanomaterials act at distances greater than typically assumed, and can be characterized by different scaling laws depending on the dimensionality and size of the system. Specifically, we study the behaviour of van der Waals interactions in single-layer and multilayer graphene, fullerenes of varying size, single-wall carbon nanotubes and graphene nanoribbons. As a function of nanostructure size, the van der Waals coefficients follow unusual trends for all of the considered systems, and deviate significantly from the conventionally employed pairwise-additive picture. We propose that the peculiar van der Waals interactions in nanostructured materials could be exploited to control their self-assembly.
引用
收藏
页数:6
相关论文
共 41 条
[1]  
Adrian Parsegian V., 2005, VAN DER WAALS FORCES
[2]   Direct measurement of the electric polarizability of isolated C60 molecules [J].
Antoine, R ;
Dugourd, P ;
Rayane, D ;
Benichou, E ;
Broyer, M ;
Chandezon, F ;
Guet, C .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (19) :9771-9772
[3]   Interaction of the van der Waals type between three atoms [J].
Axilrod, BM ;
Teller, E .
JOURNAL OF CHEMICAL PHYSICS, 1943, 11 (06) :299-300
[4]   DRUDE-MODEL CALCULATION OF DISPERSION FORCES .1. GENERAL THEORY [J].
BADE, WL .
JOURNAL OF CHEMICAL PHYSICS, 1957, 27 (06) :1280-1284
[5]   Ab initio molecular simulations with numeric atom-centered orbitals [J].
Blum, Volker ;
Gehrke, Ralf ;
Hanke, Felix ;
Havu, Paula ;
Havu, Ville ;
Ren, Xinguo ;
Reuter, Karsten ;
Scheffler, Matthias .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (11) :2175-2196
[6]   Evaluation of the van der Waals force for atomic force microscopy [J].
Bruch, LW .
PHYSICAL REVIEW B, 2005, 72 (03)
[7]   Tkatchenko-Scheffler van der Waals correction method with and without self-consistent screening applied to solids [J].
Bucko, Tomas ;
Lebegue, S. ;
Hafner, Juergen ;
Angyan, J. G. .
PHYSICAL REVIEW B, 2013, 87 (06)
[8]   Nanoscale van der Waals interactions [J].
Cole, Milton W. ;
Velegol, Darrell ;
Kim, Hye-Young ;
Lucas, Amand A. .
MOLECULAR SIMULATION, 2009, 35 (10-11) :849-866
[9]   Asymptotics of the dispersion interaction: Analytic benchmarks for van der Waals energy functionals [J].
Dobson, JF ;
White, A ;
Rubio, A .
PHYSICAL REVIEW LETTERS, 2006, 96 (07)
[10]   Calculation of dispersion energies [J].
Dobson, John F. ;
Gould, Tim .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (07)