Stochastic properties of a system of point vortices

被引:1
|
作者
Rudyak, VY [1 ]
Bord, EG [1 ]
Kranchev, DF [1 ]
机构
[1] Novosibirsk State Architecture Bldg Univ, Novosibirsk, Russia
基金
俄罗斯基础研究基金会;
关键词
Vortex; Phase Trajectory; Point Vortex; Stochastic Property; Local Instability;
D O I
10.1134/1.1707175
中图分类号
O59 [应用物理学];
学科分类号
摘要
The dynamic and stochastic properties of a system of point vortices occurring at the vertices of a regular N-gon have been investigated. The time of reversibility of the phase trajectories was determined and their stability was studied. It is established that such a system exhibits stochastic properties only in the presence of a local instability, which is possible for N greater than or equal to 8. (C) 2004 MAIK "Nauka / Interperiodica".
引用
收藏
页码:225 / 227
页数:3
相关论文
共 50 条
  • [21] A new integrable problem of motion of point vortices on the sphere
    Borisov, Alexey V.
    Kilin, Alexander A.
    Mamaev, Ivan S.
    IUTAM SYMPOSIUM ON HAMILTONIAN DYNAMICS, VORTEX STRUCTURES, TURBULENCE, 2008, 6 : 39 - +
  • [22] Self-Similar Collapse of n Point Vortices
    Kudela, Henryk
    JOURNAL OF NONLINEAR SCIENCE, 2014, 24 (05) : 913 - 933
  • [23] THE GEOMETRY AND DYNAMICS OF INTERACTING RIGID BODIES AND POINT VORTICES
    Vankerschaver, Joris
    Kanso, Eva
    Marsden, Jerrold
    JOURNAL OF GEOMETRIC MECHANICS, 2009, 1 (02) : 223 - 266
  • [24] Dipole and Multipole Flows with Point Vortices and Vortex Sheets
    O'Neil, Kevin A.
    REGULAR & CHAOTIC DYNAMICS, 2018, 23 (05) : 519 - 529
  • [25] Relative equilibria of point vortices and the fundamental theorem of algebra
    Aref, Hassan
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2132): : 2168 - 2184
  • [26] Close pairs of relative equilibria for identical point vortices
    Dirksen, Tobias
    Aref, Hassan
    PHYSICS OF FLUIDS, 2011, 23 (05)
  • [27] Self-Similar Collapse of n Point Vortices
    Henryk Kudela
    Journal of Nonlinear Science, 2014, 24 : 913 - 933
  • [28] Clustering analysis of periodic point vortices with the L function
    Umeki, Makoto
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2007, 76 (04)
  • [29] Dipole and Multipole Flows with Point Vortices and Vortex Sheets
    Kevin A. O’Neil
    Regular and Chaotic Dynamics, 2018, 23 : 519 - 529
  • [30] Spectral gradient flow and equilibrium configurations of point vortices
    Barreiro, Andrea
    Bronski, Jared
    Newton, Paul K.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 466 (2118): : 1687 - 1702