Stochastic properties of a system of point vortices

被引:1
|
作者
Rudyak, VY [1 ]
Bord, EG [1 ]
Kranchev, DF [1 ]
机构
[1] Novosibirsk State Architecture Bldg Univ, Novosibirsk, Russia
基金
俄罗斯基础研究基金会;
关键词
Vortex; Phase Trajectory; Point Vortex; Stochastic Property; Local Instability;
D O I
10.1134/1.1707175
中图分类号
O59 [应用物理学];
学科分类号
摘要
The dynamic and stochastic properties of a system of point vortices occurring at the vertices of a regular N-gon have been investigated. The time of reversibility of the phase trajectories was determined and their stability was studied. It is established that such a system exhibits stochastic properties only in the presence of a local instability, which is possible for N greater than or equal to 8. (C) 2004 MAIK "Nauka / Interperiodica".
引用
收藏
页码:225 / 227
页数:3
相关论文
共 50 条
  • [1] Stochastic properties of a system of point vortices
    V. Ya. Rudyak
    E. G. Bord
    D. F. Kranchev
    Technical Physics Letters, 2004, 30 : 225 - 227
  • [2] Point vortices on hyperbolic sphere
    Hwang, Seungsu
    Kim, Sun-Chul
    JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (04) : 475 - 488
  • [3] Clustered Equilibria of Point Vortices
    O'Neil, Kevin A.
    REGULAR & CHAOTIC DYNAMICS, 2011, 16 (06): : 555 - 561
  • [4] Motion of buoyant point vortices
    Carpenter, Jeffrey R.
    Guha, Anirban
    PHYSICAL REVIEW FLUIDS, 2020, 5 (06)
  • [5] Clustered equilibria of point vortices
    Kevin A. O’Neil
    Regular and Chaotic Dynamics, 2011, 16 : 555 - 561
  • [6] Interaction between Kirchhoff vortices and point vortices in an ideal fluid
    A. V. Borisov
    I. S. Mamaev
    Regular and Chaotic Dynamics, 2007, 12 : 68 - 80
  • [7] Interaction between Kirchhoff vortices and point vortices in an ideal fluid
    Borisov, A. V.
    Mamaev, I. S.
    REGULAR & CHAOTIC DYNAMICS, 2007, 12 (01): : 68 - 80
  • [8] Dynamics of symplectic fluids and point vortices
    Boris Khesin
    Geometric and Functional Analysis, 2012, 22 : 1444 - 1459
  • [9] Motion of three point vortices on a sphere
    Kidambi, R
    Newton, PK
    PHYSICA D, 1998, 116 (1-2): : 143 - 175
  • [10] Stability of the configurations of point vortices on a sphere
    Meleshko V.V.
    Newton P.K.
    Ostrovs'kyi V.V.
    Journal of Mathematical Sciences, 2010, 171 (5) : 603 - 619