Electrical Compartmentalization in Dendritic Spines

被引:123
|
作者
Yuste, Rafael [1 ,2 ,3 ]
机构
[1] Columbia Univ, HHMI, Dept Biol Sci, New York, NY 10027 USA
[2] Columbia Univ, HHMI, Dept Neurosci, New York, NY 10027 USA
[3] Columbia Univ, Kavli Inst Brain Sci, New York, NY 10027 USA
来源
ANNUAL REVIEW OF NEUROSCIENCE, VOL 36 | 2013年 / 36卷
关键词
NMDA; computation; cortex; imaging; uncaging; network; emergent; POSTSYNAPTIC DENSITY FRACTION; ACTION-POTENTIALS; DEVELOPMENTAL REGULATION; SYNAPTIC AMPLIFICATION; PROTEOMIC ANALYSIS; CALCIUM-CHANNELS; RECEPTOR NUMBER; ACTIVE MEMBRANE; CEREBRAL-CORTEX; NMDA RECEPTORS;
D O I
10.1146/annurev-neuro-062111-150455
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Most excitatory inputs in the CNS contact dendritic spines, avoiding dendritic shafts, so spines must play a key role for neurons. Recent data suggest that, in addition to enhancing connectivity and isolating synaptic biochemistry, spines can behave as electrical compartments independent from their parent dendrites. It is becoming clear that, although spines experience voltages similar to those of dendrites during action potentials (APs), spines must sustain higher depolarizations than do dendritic shafts during excitatory postsynaptic potentials (EPSPs). Synaptic potentials are likely amplified at the spine head and then reduced as they invade the dendrite through the spine neck. These electrical changes, probably due to a combination of passive and active mechanisms, may prevent the saturation of dendrites by the joint activation of many inputs, influence dendritic integration, and contribute to rapid synaptic plasticity. The electrical properties of spines could enable neural circuits to harness a high connectivity, implementing a "synaptic democracy," where each input can be individually integrated, tallied, and modified in order to generate emergent functional states.
引用
收藏
页码:429 / 449
页数:21
相关论文
共 50 条
  • [21] Dendritic Spines as Tunable Regulators of Synaptic Signals
    Tonnesen, Jan
    Naegerl, U. Valentin
    FRONTIERS IN PSYCHIATRY, 2016, 7
  • [22] Input transformation by dendritic spines of pyramidal neurons
    Araya, Roberto
    FRONTIERS IN NEUROANATOMY, 2014, 8
  • [23] Ca2+ signaling in dendritic spines
    Bloodgood, Brenda L.
    Sabatini, Bernardo L.
    CURRENT OPINION IN NEUROBIOLOGY, 2007, 17 (03) : 345 - 351
  • [24] Structural dynamics of dendritic spines in memory and cognition
    Kasai, Haruo
    Fukuda, Masahiro
    Watanabe, Satoshi
    Hayashi-Takagi, Akiko
    Noguchi, Jun
    TRENDS IN NEUROSCIENCES, 2010, 33 (03) : 121 - 129
  • [25] Spatiotemporal dynamics of dendritic spines in the living brain
    Chen, Chia-Chien
    Lu, Ju
    Zuo, Yi
    FRONTIERS IN NEUROANATOMY, 2014, 8
  • [26] Clustered structural and functional plasticity of dendritic spines
    Lu, Ju
    Zuo, Yi
    BRAIN RESEARCH BULLETIN, 2017, 129 : 18 - 22
  • [27] Enhanced Dendritic Compartmentalization in Human Cortical Neurons
    Beaulieu-Laroche, Lou
    Toloza, Enrique H. S.
    van der Goes, Marie-Sophie
    Lafourcade, Mathieu
    Barnagian, Derrick
    Williams, Ziv M.
    Eskandar, Emad N.
    Frosch, Matthew P.
    Cash, Sydney S.
    Harnett, Mark T.
    CELL, 2018, 175 (03) : 643 - +
  • [28] Editorial: Dendritic spines: from shape to function
    Heck, Nicolas
    Benavides-Piccione, Ruth
    FRONTIERS IN NEUROANATOMY, 2015, 9
  • [29] Rapid Functional Maturation of Nascent Dendritic Spines
    Zito, Karen
    Scheuss, Volker
    Knott, Graham
    Hill, Travis
    Svoboda, Karel
    NEURON, 2009, 61 (02) : 247 - 258
  • [30] Function of Dendritic Spines on Hippocampal Inhibitory Neurons
    Scheuss, Volker
    Bonhoeffer, Tobias
    CEREBRAL CORTEX, 2014, 24 (12) : 3142 - 3153