FRACTIONAL APPROXIMATIONS OF ABSTRACT SEMILINEAR PARABOLIC PROBLEMS

被引:10
作者
Bezerra, Flank D. M. [1 ]
Carvalho, Alexandre N. [2 ]
Nascimento, Marcelo J. D. [3 ]
机构
[1] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
[2] Univ Sao Paulo, Dept Matemat, Inst Ciencias Matemat & Comp, Campus Sao Carlos,Caixa Postal 668, BR-13560970 Sao Carlos, SP, Brazil
[3] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Carlos, SP, Brazil
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2020年 / 25卷 / 11期
基金
巴西圣保罗研究基金会;
关键词
Abstract parabolic equations; fractional power; sectorial operators; continuity; global attractors; wave equations; ATTRACTORS; CONVERGENCE; CONTINUITY; EQUATIONS; DYNAMICS;
D O I
10.3934/dcdsb.2020095
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the abstract semilinear parabolic problem of the form du/dt + Au = f(u), as the limit of the corresponding fractional approximations du/dt + A(alpha)u = f(u), in a Banach space X, where the operator A : D(A) subset of X -> X is a sectorial operator in the sense of Henry [22]. Under suitable assumptions on nonlinearities f : X-alpha -> X (X-alpha := D(A(alpha))), we prove the continuity with rate (with respect to the parameter alpha) for the global attractors (as seen in Babin and Vishik [4] Chapter 8, Theorem 2.1). As an application of our analysis we consider a fractional approximation of the strongly damped wave equations and we study the convergence with rate of solutions of such approximations.
引用
收藏
页码:4221 / 4255
页数:35
相关论文
共 29 条
  • [1] Amann H., 1995, MONOGRAPHS MATH, V89
  • [2] Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain
    Arrieta, JM
    Carvalho, AN
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 199 (01) : 143 - 178
  • [3] ESTIMATES ON THE DISTANCE OF INERTIAL MANIFOLDS
    Arrieta, Jose M.
    Santamaria, Esperanza
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (10) : 3921 - 3944
  • [4] Babin A. V., 1992, Attractors of Evolutionary Equations
  • [5] BABIN AV, 1983, J MATH PURE APPL, V62, P441
  • [6] Parabolic approximation of damped wave equations via fractional powers: Fast growing nonlinearities and continuity of the dynamics
    Bezerra, F. D. M.
    Carvalho, A. N.
    Cholewa, J. W.
    Nascimento, M. J. D.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 450 (01) : 377 - 405
  • [7] Fractional Schrodinger equation; solvability and connection with classical Schrodinger equation
    Bezerra, Flank D. M.
    Carvalho, Alexandre N.
    Dlotko, Tomasz
    Nascimento, Marcelo J. D.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 457 (01) : 336 - 360
  • [8] Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations
    Bruschi, S. M.
    Carvalho, A. N.
    Cholewa, J. W.
    Dlotko, Tornasz
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2006, 18 (03) : 767 - 814
  • [9] Continuity of attractors for parabolic problems with localized large diffusion
    Carbone, Vera Lucia
    Carvalho, Alexandre N.
    Schiabel-Silva, Karina
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (03) : 515 - 535
  • [10] Dynamics of the viscous Cahn-Hilliard equation
    Carvalho, A. N.
    Dlotko, Tomasz
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (02) : 703 - 725