In situ synthesis of SnO2-Fe2O3@polyaniline and their conversion to SnO2-Fe2O3@C composite as fully reversible anode material for lithium-ion batteries

被引:77
|
作者
Guo, Jinxue [1 ]
Chen, Lei [1 ]
Wang, Guangjin [1 ]
Zhang, Xiao [1 ]
Li, Fenfen [1 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Chem & Mol Engn, State Key Lab Base Ecochem Engn, Qingdao 266042, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; Anode; Tin oxide; Iron oxide; In situ polymerization; HIGH-PERFORMANCE ANODE; CARBON NANOTUBES; STORAGE CAPACITY; OXIDE COMPOSITE; SNO2; NANOWIRE; NANOSTRUCTURES; NANOPARTICLES; ELECTRODE; NANOCRYSTALS; NANOFIBERS;
D O I
10.1016/j.jpowsour.2013.08.052
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report a two-step approach to synthesize SnO2-Fe2O3@C nanocomposite as a good candidate for high-performance lithium-ion batteries (LIBs) anodes. In this route, the SnO2-Fe2O3@polyaniline is first prepared with in situ polymerization in so!, followed by a carbonized transformation process. The growth of metal oxides particles is firstly suppressed by the polyaniline (PANI) on their outer surface in the in-situ polymerization route and secondly restricted by fully coating of carbon shell in thermal treatment, which forms by in situ carbonization of the polymer. Due to the unique structure and a so-called synergistic effect between SnO2 and Fe2O3, an excellent capacity over 1000 mAh g(-1) is maintained after 380 cycles at current density of 400 mA g(-1). The key insight is that the composite anode presented here achieves fully reversible Li insertion/extraction reaction and maintains high capacity for a long cycling life at high current density, and is realized as promising high-performance LIBs anode materials. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:862 / 867
页数:6
相关论文
共 50 条
  • [1] Microwave Synthesis of SnO2/Fe2O3 Nanocomposites for Lithium-Ion Batteries
    Yoshinaga, Masashi
    Kijima, Norihito
    Ishizaki, Haruo
    Akimoto, Junji
    ELECTROCERAMICS IN JAPAN XV, 2013, 566 : 103 - 106
  • [2] Electrochemical performance of rGO-Fe2O3-SnO2 composite anode for lithium-ion battery
    Zhu, Guanglin
    Lu, Fengsheng
    Liu, Quan
    Zhang, Lei
    Wang, Yuanchao
    Guo, Cean
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2024, 28 (01) : 75 - 84
  • [3] Electrochemical performance of rGO-Fe2O3-SnO2 composite anode for lithium-ion battery
    Guanglin Zhu
    Fengsheng Lu
    Quan Liu
    Lei Zhang
    Yuanchao Wang
    Cean Guo
    Journal of Solid State Electrochemistry, 2024, 28 : 75 - 84
  • [4] Excellent cyclic performance of Fe2O3@C/SnO2 controlled by Fe2O3@C and SnO2/C hybrid structures for lithium-ion batteries
    Wang, X. M.
    Wang, N.
    Zhang, Q.
    Shi, X. F.
    Yu, Y. N.
    Chai, Y. J.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2019, 132 : 130 - 137
  • [5] A novel Fe3O4-SnO2-graphene ternary nanocomposite as an anode material for lithium-ion batteries
    Lian, Peichao
    Liang, Shuzhao
    Zhu, Xuefeng
    Yang, Weishen
    Wang, Haihui
    ELECTROCHIMICA ACTA, 2011, 58 : 81 - 88
  • [6] Facile Synthesis of SnO2/Fe2O3 Hollow Spheres and their Application as Anode Materials in Lithium-ion Batteries
    Jin, Rencheng
    Guan, Yanshuai
    Liu, Hong
    Zhou, Junhao
    Chen, Gang
    CHEMPLUSCHEM, 2014, 79 (11): : 1643 - 1648
  • [7] Fe3O4/SnO2/rGO ternary composite as a high-performance anode material for lithium-ion batteries
    Wang, Yukun
    Zhang, Hanyin
    Hu, Renzong
    Liu, Jiangwen
    van Ree, Teunis
    Wang, Haihui
    Yang, Lichun
    Zhu, Min
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 693 : 1174 - 1179
  • [8] Synthesis and electrochemical performance of SnO2-Fe2O3 composite as an anode material for Na-ion and Li-ion batteries
    Wu, Xuehang
    Wu, Wenwei
    Zhou, Yuan
    Huang, Xusheng
    Chen, Wen
    Wang, Qing
    POWDER TECHNOLOGY, 2015, 280 : 119 - 123
  • [9] Synthesis and Characterization of α-Fe2O3/C Composite Anode for Lithium Ion Batteries
    Wu Chao
    Zhuang Quanchao
    Xu Shoudong
    Cui Yongli
    Qiang Yinghuai
    Sun Zhi
    ACTA CHIMICA SINICA, 2012, 70 (01) : 51 - 57
  • [10] A simple fabrication for nanoscale SnO2-Fe2O3-C lithium-ion battery anode material with tubular network structure
    Dongping Yang
    Yefeng Feng
    Jiongjian Gao
    Kaidan Wu
    Miao He
    Ionics, 2022, 28 : 2185 - 2196