In situ synthesis of SnO2-Fe2O3@polyaniline and their conversion to SnO2-Fe2O3@C composite as fully reversible anode material for lithium-ion batteries

被引:77
作者
Guo, Jinxue [1 ]
Chen, Lei [1 ]
Wang, Guangjin [1 ]
Zhang, Xiao [1 ]
Li, Fenfen [1 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Chem & Mol Engn, State Key Lab Base Ecochem Engn, Qingdao 266042, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; Anode; Tin oxide; Iron oxide; In situ polymerization; HIGH-PERFORMANCE ANODE; CARBON NANOTUBES; STORAGE CAPACITY; OXIDE COMPOSITE; SNO2; NANOWIRE; NANOSTRUCTURES; NANOPARTICLES; ELECTRODE; NANOCRYSTALS; NANOFIBERS;
D O I
10.1016/j.jpowsour.2013.08.052
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report a two-step approach to synthesize SnO2-Fe2O3@C nanocomposite as a good candidate for high-performance lithium-ion batteries (LIBs) anodes. In this route, the SnO2-Fe2O3@polyaniline is first prepared with in situ polymerization in so!, followed by a carbonized transformation process. The growth of metal oxides particles is firstly suppressed by the polyaniline (PANI) on their outer surface in the in-situ polymerization route and secondly restricted by fully coating of carbon shell in thermal treatment, which forms by in situ carbonization of the polymer. Due to the unique structure and a so-called synergistic effect between SnO2 and Fe2O3, an excellent capacity over 1000 mAh g(-1) is maintained after 380 cycles at current density of 400 mA g(-1). The key insight is that the composite anode presented here achieves fully reversible Li insertion/extraction reaction and maintains high capacity for a long cycling life at high current density, and is realized as promising high-performance LIBs anode materials. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:862 / 867
页数:6
相关论文
共 39 条
[1]   Applying functionalized carbon nanotubes to enhance electrochemical performances of tin oxide composite electrodes for Li-ion battery [J].
Ahn, Dongjoon ;
Xiao, Xingcheng ;
Li, Yawen ;
Sachdev, Anil K. ;
Park, Hey Woong ;
Yu, Aiping ;
Chen, Zhongwei .
JOURNAL OF POWER SOURCES, 2012, 212 :66-72
[2]   α-Fe2O3/single-walled carbon nanotube hybrid films as high-performance anodes for rechargeable lithium-ion batteries [J].
Cao, Zeyuan ;
Wei, Bingqing .
JOURNAL OF POWER SOURCES, 2013, 241 :330-340
[3]   General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation [J].
Cheng, Liang ;
Yan, Jing ;
Zhu, Guan-Nan ;
Luo, Jia-Yan ;
Wang, Cong-Xiao ;
Xia, Yong-Yao .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (03) :595-602
[4]   Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition [J].
Chernyshova, I. V. ;
Hochella, M. F., Jr. ;
Madden, A. S. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (14) :1736-1750
[5]   Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites [J].
Courtney, IA ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (06) :2045-2052
[6]   SnO2 nanoparticles@polypyrrole nanowires composite as anode materials for rechargeable lithium-ion batteries [J].
Cui, Lifeng ;
Shen, Jian ;
Cheng, Fangyi ;
Tao, Zhanliang ;
Chen, Jun .
JOURNAL OF POWER SOURCES, 2011, 196 (04) :2195-2201
[7]   High-Yield Gas-Liquid Interfacial Synthesis of Highly Dispersed Fe3O4 Nanocrystals and Their Application in Lithium-Ion Batteries [J].
Cui, Zhi-Min ;
Hang, Ling-Yan ;
Song, Wei-Guo ;
Guo, Yu-Guo .
CHEMISTRY OF MATERIALS, 2009, 21 (06) :1162-1166
[8]   Hollow core-shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li+ ion storage [J].
Deng, Da ;
Lee, Jim Yang .
CHEMISTRY OF MATERIALS, 2008, 20 (05) :1841-1846
[9]   SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties [J].
Ding, Shujiang ;
Luan, Deyan ;
Boey, Freddy Yin Chiang ;
Chen, Jun Song ;
Lou, Xiong Wen .
CHEMICAL COMMUNICATIONS, 2011, 47 (25) :7155-7157
[10]   TiO2(B) nanofiber bundles as a high performance anode for a Li-ion battery [J].
Guo, Ziyang ;
Dong, Xiaoli ;
Zhou, Dandan ;
Du, Yuanjin ;
Wang, Yonggang ;
Xia, Yongyao .
RSC ADVANCES, 2013, 3 (10) :3352-3358