Splitting monoidal stable model categories

被引:13
作者
Barnes, D. [1 ]
机构
[1] Max Planck Inst Math, D-53111 Bonn, Germany
关键词
MODULES; SPECTRA;
D O I
10.1016/j.jpaa.2008.10.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If C is a stable model category with a monoidal product then the set of homotopy classes of self-maps of the unit forms a commutative ring, [S, S](C). An idempotent e of this ring will split the homotopy category: [X, Y](C) congruent to e[X, Y](C) circle plus (1 - e) [X, Y](C). We prove that provided the localised model structures exist, this splitting of the homotopy category comes from a splitting of the model category, that is, C is Quillen equivalent to L(eS)C x L((1-e)S)C and [X, Y](LeSC) congruent to e[X, Y](C). This Quillen equivalence is strong monoidal and is symmetric when the monoidal product of C is. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:846 / 856
页数:11
相关论文
共 17 条
[11]  
Hovey M., 1999, MATH SURVEYS MONOGRA
[12]   Model categories of diagram spectra [J].
Mandell, MA ;
May, JP ;
Schwede, S ;
Shipley, B .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2001, 82 :441-512
[13]  
Quillen D. G., 1967, LECT NOTES MATH LECT NOTES MATH, V43
[14]   Stable model categories are categories of modules [J].
Schwede, S ;
Shipley, B .
TOPOLOGY, 2003, 42 (01) :103-153
[15]  
Weibel Charles A., 1994, INTRO HOMOLOGICAL AL, V38
[16]   Classifying modules over K-theory spectra [J].
Wolbert, JJ .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 124 (1-3) :289-323
[17]  
[No title captured]