Splitting monoidal stable model categories

被引:13
作者
Barnes, D. [1 ]
机构
[1] Max Planck Inst Math, D-53111 Bonn, Germany
关键词
MODULES; SPECTRA;
D O I
10.1016/j.jpaa.2008.10.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If C is a stable model category with a monoidal product then the set of homotopy classes of self-maps of the unit forms a commutative ring, [S, S](C). An idempotent e of this ring will split the homotopy category: [X, Y](C) congruent to e[X, Y](C) circle plus (1 - e) [X, Y](C). We prove that provided the localised model structures exist, this splitting of the homotopy category comes from a splitting of the model category, that is, C is Quillen equivalent to L(eS)C x L((1-e)S)C and [X, Y](LeSC) congruent to e[X, Y](C). This Quillen equivalence is strong monoidal and is symmetric when the monoidal product of C is. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:846 / 856
页数:11
相关论文
共 17 条
[1]  
Adams J.F., 1974, CHICAGO LECT MATH
[2]  
[Anonymous], 1972, INTRO COMPACT TRANSF
[3]  
[Anonymous], LECT NOTES MATH
[4]  
Barnes D., 2008, ARXIV08020954V1MATHA
[5]  
Deligne, 1977, COHOMOLOGIE ETALE, V569
[6]  
DIECK TT, 1977, COMPOS MATH, V35, P91
[7]  
Elmendorf A D, 1997, Math. Surv. Monogr., V47
[8]  
Greenlees J P C, 1995, Mem. Amer. Math. Soc., V543
[9]  
Greenlees JPC, 1998, FIELDS INST COMMUN, V19, P103
[10]  
Hirschhorn P S, 2003, Math. Surv. Monogr., V99