Bending solutions of FGM Timoshenko beams from those of the homogenous Euler-Bernoulli beams

被引:42
|
作者
Li, Shi-Rong [1 ,2 ]
Cao, Da-Fu [1 ]
Wan, Ze-Qing [1 ,2 ]
机构
[1] Yangzhou Univ, Sch Civil Sci & Engn, Yangzhou 225127, Jiangsu, Peoples R China
[2] Yangzhou Univ, Sch Hydraul Sci & Engn, Yangzhou 225127, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Functionally graded material; Timoshenko beam; Euler-Bernoulli beam; Bending solution; PLATES; TERMS;
D O I
10.1016/j.apm.2013.02.047
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
By using mathematical similarity and load equivalence between the governing equations, bending solutions of FGM Timoshenko beams are derived analytically in terms of the homogenous Euler-Bernoulli beams. The deflection, rotational angle, bending moment and shear force of FGM Timoshenko beams are expressed in terms of the deflection of the corresponding homogenous Euler-Bernoulli beams with the same geometry, the same loadings and end constraints. Consequently, solutions of bending of the FGM Timoshenko beams are simplified as the calculation of the transition coefficients which can be easily determined by the variation law of the gradient of the material properties and the geometry of the beams if the solutions of corresponding Euler-Bernoulli beam are known. As examples, solutions are given for the FGM Timoshenko beams under S-S, C-C, C-F and C-S end constraints and arbitrary transverse loadings to illustrate the use of this approach. These analytical solutions can be as benchmarks in the further investigations of behaviors of FGM beams. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:7077 / 7085
页数:9
相关论文
共 50 条
  • [21] Viscoelastic buckling of Euler-Bernoulli and Timoshenko beams under time variant general loading conditions
    Salehi, M
    Ansari, F
    IRANIAN POLYMER JOURNAL, 2006, 15 (03) : 183 - 193
  • [22] Benchmarking the difference of moving follower and normal loads on linear and nonlinear Euler-Bernoulli and Timoshenko beams
    Avetisyan, Ara S.
    Khurshudyan, Asatur Zh.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2021, 101 (10):
  • [23] Comparison of natural characters between buckling Timoshenko and Euler-Bernoulli beams under the axial force
    Jing J.
    Mao X.
    Ding H.
    Chen L.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (24): : 33 - 40+71
  • [24] An analytical solution for shape-memory-polymer Euler-Bernoulli beams under bending
    Baghani, M.
    Mohammadi, H.
    Naghdabadi, R.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2014, 84 : 84 - 90
  • [25] Non-linear vibration of Euler-Bernoulli beams
    Barari, A.
    Kaliji, H. D.
    Ghadimi, M.
    Domairry, G.
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2011, 8 (02): : 139 - 148
  • [26] Euler-Bernoulli beams with multiple singularities in the flexural stiffness
    Biondi, B.
    Caddemi, S.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2007, 26 (05) : 789 - 809
  • [27] Analytical Approximation of Nonlinear Vibration of Euler-Bernoulli Beams
    Jafari, S. S.
    Rashidi, M. M.
    Johnson, S.
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2016, 13 (07): : 1250 - 1264
  • [28] Non-uniform Euler-Bernoulli beams' natural frequencies
    Aya B, Hugo
    Cano M, Ricardo
    Zhevandrov B, Petr
    INGENIERIA E INVESTIGACION, 2011, 31 (01): : 7 - 15
  • [29] The Euler-Bernoulli Limit of Thin Brittle Linearized Elastic Beams
    Ginster, Janusz
    Gladbach, Peter
    JOURNAL OF ELASTICITY, 2024, 156 (01) : 125 - 155
  • [30] Tailoring the second mode of Euler-Bernoulli beams: an analytical approach
    Sarkar, Korak
    Ganguli, Ranjan
    STRUCTURAL ENGINEERING AND MECHANICS, 2014, 51 (05) : 773 - 792