Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC

被引:161
作者
Andrieu, C [1 ]
Doucet, A [1 ]
机构
[1] Univ Cambridge, Dept Engn, Signal Proc Grp, Cambridge CB2 1PZ, England
基金
英国工程与自然科学研究理事会;
关键词
Bayesian methods; MCMC; model selection; spectral analysis;
D O I
10.1109/78.790649
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, the problem of joint Bayesian model selection and parameter estimation for sinusoids in white Gaussian noise is addressed. An original Bayesian model is proposed that allows us to define a posterior distribution on the parameter space. All Bayesian inference is then based on this distribution. Unfortunately, a direct evaluation of this distribution and of its features, including posterior model probabilities, requires evaluation of some complicated high-dimensional integrals. We develop an efficient stochastic algorithm based on reversible jump Markov chain Monte Carlo methods to perform the Bayesian computation. A convergence result for this algorithm is established, In simulation, it appears that the performance of detection based on posterior model probabilities outperforms conventional detection schemes.
引用
收藏
页码:2667 / 2676
页数:10
相关论文
共 26 条