A minimum distance estimator for long-memory processes

被引:30
作者
Tieslau, MA [1 ]
Schmidt, P [1 ]
Baillie, RT [1 ]
机构
[1] MICHIGAN STATE UNIV,DEPT ECON,E LANSING,MI 48824
关键词
fractional integration; long memory; persistence; ARFIMA;
D O I
10.1016/0304-4076(94)01703-4
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper considers a minimum distance estimator (MDE) of the differencing parameter of the fractionally integrated white noise model. The MDE minimizes the difference between sample and population autocorrelations. The paper presents calculations of asymptotic variances to examine the efficiency of the MDE relative to that of the MLE. For values of the differencing parameter less than 1/4, the MDE is root T-consistent and asymptotically normal, and the asymptotic variance of the MDE using the first n autocorrelations approaches that of the MLE as n increases. However, there is a substantial efficiency loss if low-order autocorrelations are omitted. This implies that a nonparametric treatment of short-run dynamics will involve a substantial loss of efficiency.
引用
收藏
页码:249 / 264
页数:16
相关论文
共 50 条
[1]   An M-estimator for the long-memory parameter [J].
Reisen, V. A. ;
Levy-Leduc, C. ;
Taqqu, M. S. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2017, 187 :44-55
[2]   State space modeling of long-memory processes [J].
Chan, NH ;
Palma, W .
ANNALS OF STATISTICS, 1998, 26 (02) :719-740
[3]   An alternative maximum likelihood estimator of long-memory processes using compactly supported wavelets [J].
Jensen, MJ .
JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2000, 24 (03) :361-387
[4]   The Sensitivity of Detrended Long-Memory Processes [J].
Banerjee, Anurag N. .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (20) :3770-3780
[5]   MEASURING STATIONARITY IN LONG-MEMORY PROCESSES [J].
Sen, Kemal ;
Preuss, Philip ;
Dette, Holger .
STATISTICA SINICA, 2016, 26 (01) :313-357
[6]   Applicability of the Whittle estimator to non-stationary and non-linear long-memory processes [J].
Sousa-Vieira, M. E. .
JOURNAL OF SIMULATION, 2016, 10 (03) :182-192
[7]   A wavelet Whittle estimator of generalized long-memory stochastic volatility [J].
Gonzaga, Alex ;
Hauser, Michael .
STATISTICAL METHODS AND APPLICATIONS, 2011, 20 (01) :23-48
[8]   A wavelet Whittle estimator of generalized long-memory stochastic volatility [J].
Alex Gonzaga ;
Michael Hauser .
Statistical Methods & Applications, 2011, 20 :23-48
[9]   Estimating the Long-Memory Parameter in Nonstationary Processes Using Wavelets [J].
Boubaker, Heni ;
Peguin-Feissolle, Anne .
COMPUTATIONAL ECONOMICS, 2013, 42 (03) :291-306
[10]   The approximation of long-memory processes by an ARMA model [J].
Basak, GK ;
Chan, NH ;
Palma, W .
JOURNAL OF FORECASTING, 2001, 20 (06) :367-389