MOBIUS ITERATED FUNCTION SYSTEMS

被引:0
|
作者
Vince, Andrew [1 ]
机构
[1] Univ Florida, Dept Math, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
Iterated function systems; Mobius transformation; SELF-SIMILARITY; FRACTALS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Iterated function systems have been most extensively studied when the functions are affine transformations of Euclidean space and, more recently, projective transformations on real projective space. This paper investigates iterated function systems consisting of Mobius transformations on the extended complex plane or, equivalently, on the Riemann sphere. The main result is a characterization, in terms of topological, geometric, and dynamical properties, of Mobius iterated function systems that possess an attractor. The paper also includes results on the duality between the attractor and repeller of a Mobius iterated function system.
引用
收藏
页码:491 / 509
页数:19
相关论文
共 50 条
  • [1] A CLASS OF MOBIUS ITERATED FUNCTION SYSTEMS
    Cakmak, Gokce
    Deniz, Ali
    Kocak, Sahin
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (03): : 927 - 933
  • [2] On computing Jacobi matrices associated with recurrent and Mobius iterated function systems
    Mantica, G
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 115 (1-2) : 419 - 431
  • [3] Iterated Mobius transformations
    Burns, Anne M.
    JOURNAL OF MATHEMATICS AND THE ARTS, 2008, 2 (04) : 171 - 188
  • [4] Iterated function systems and dynamical systems
    Gora, P
    Boyarsky, A
    CHAOS, 1995, 5 (04) : 634 - 639
  • [5] On chaos for iterated function systems
    Bahabadi, Alireza Zamani
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2018, 11 (04)
  • [6] Ends of iterated function systems
    Gregory R. Conner
    Wolfram Hojka
    Mathematische Zeitschrift, 2014, 277 : 1073 - 1083
  • [7] Chaotic iterated function systems
    Sarizadeh, Aliasghar
    ARCHIV DER MATHEMATIK, 2022, 119 (05) : 531 - 538
  • [8] Attractors for iterated function systems
    D'Aniello, Emma
    Steele, T. H.
    JOURNAL OF FRACTAL GEOMETRY, 2016, 3 (02) : 95 - 117
  • [9] Chaotic iterated function systems
    Aliasghar Sarizadeh
    Archiv der Mathematik, 2022, 119 : 531 - 538
  • [10] Parabolic iterated function systems
    Mauldin, RD
    Urbanski, M
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 : 1423 - 1447