Solving second-order fuzzy differential equations by the fuzzy Laplace transform method

被引:23
作者
ElJaoui, Elhassan [1 ]
Melliani, Said [1 ]
Chadli, L. Saadia [1 ]
机构
[1] Sultan Moulay Slimane Univ, Lab Math Appl & Calcul Sci, POB 523, Beni Mellal 23000, Morocco
关键词
fuzzy differential equation; fuzzy second-order differential equation; fuzzy Laplace transform; generalized Hukuhara differentiability;
D O I
10.1186/s13662-015-0414-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the fuzzy Laplace transforms introduced by the authors in (Allahviranloo and Ahmadi in Soft Comput. 14:235-243, 2010) to solve only first-order fuzzy linear differential equations. We extend and use this method to solve second-order fuzzy linear differential equations under generalized Hukuhara differentiability.
引用
收藏
页数:14
相关论文
共 16 条
[1]   Numerical methods for fuzzy differential inclusions [J].
Abbasbandy, S ;
Viranloo, TA ;
López-Pouso, O ;
Nieto, JJ .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (10-11) :1633-1641
[2]   Numerical solution of fuzzy differential equations by predictor-corrector method [J].
Allahviranloo, T. ;
Ahmady, N. ;
Ahmady, E. .
INFORMATION SCIENCES, 2007, 177 (07) :1633-1647
[3]   A new method for solving fuzzy linear differential equations [J].
Allahviranloo, T. ;
Abbasbandy, S. ;
Salahshour, S. ;
Hakimzadeh, A. .
COMPUTING, 2011, 92 (02) :181-197
[4]   Solving fuzzy differential equations by differential transformation method [J].
Allahviranloo, T. ;
Kiani, N. A. ;
Motamedi, N. .
INFORMATION SCIENCES, 2009, 179 (07) :956-966
[5]   Fuzzy Laplace transforms [J].
Allahviranloo, Tofigh ;
Ahmadi, M. Barkhordari .
SOFT COMPUTING, 2010, 14 (03) :235-243
[6]   INTEGRALS OF SET-VALUED FUNCTIONS [J].
AUMANN, RJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1965, 12 (01) :1-&
[7]   Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations [J].
Bede, B ;
Gal, SG .
FUZZY SETS AND SYSTEMS, 2005, 151 (03) :581-599
[8]   On new solutions of fuzzy differential equations [J].
Chalco-Cano, Y. ;
Roman-Flores, H. .
CHAOS SOLITONS & FRACTALS, 2008, 38 (01) :112-119
[9]   THE CAUCHY-PROBLEM FOR FUZZY DIFFERENTIAL-EQUATIONS [J].
KALEVA, O .
FUZZY SETS AND SYSTEMS, 1990, 35 (03) :389-396
[10]   FUZZY DIFFERENTIAL-EQUATIONS [J].
KALEVA, O .
FUZZY SETS AND SYSTEMS, 1987, 24 (03) :301-317