The eigenvalue method for cross t-intersecting families

被引:21
作者
Tokushige, Norihide [1 ]
机构
[1] Univ Ryukyus, Coll Educ, Nishihara, Okinawa 9030213, Japan
关键词
Cross intersecting family; Eigenvalue method; Hoffman-Delsarte bound; THEOREM;
D O I
10.1007/s10801-012-0419-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the ErdAs-Ko-Rado inequality for t-intersecting families of k-element subsets of an n-element set can be easily extended to an inequality for cross t-intersecting families by using the eigenvalue method if n is relatively large depending on k and t. The same method applies to the case of t-intersecting families of k-dimensional subspaces of an n-dimensional vector space over a finite field.
引用
收藏
页码:653 / 662
页数:10
相关论文
共 15 条
[1]   The complete intersection theorem for systems of finite sets [J].
Ahlswede, R ;
Khachatrian, LH .
EUROPEAN JOURNAL OF COMBINATORICS, 1997, 18 (02) :125-136
[2]  
Alon N, 2000, LECT NOTES COMPUT SC, V1853, P576
[3]   Shadows and intersections in vector spaces [J].
Chowdhury, Ameera ;
Patkos, Balazs .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2010, 117 (08) :1095-1106
[4]   INTERSECTING FAMILIES OF PERMUTATIONS [J].
Ellis, David ;
Friedgut, Ehud ;
Pilpel, Haran .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (03) :649-682
[5]   INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS [J].
ERDOS, P ;
RADO, R ;
KO, C .
QUARTERLY JOURNAL OF MATHEMATICS, 1961, 12 (48) :313-&
[6]   THE ERDOS-KO-RADO THEOREM FOR VECTOR-SPACES [J].
FRANKL, P ;
WILSON, RM .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 43 (02) :228-236
[7]  
Frankl P., 1978, Coll. Math. Soc. J. Bolyai, V18, P365
[8]   On r-Cross Intersecting Families of Sets [J].
Frankl, Peter ;
Tokushige, Norihide .
COMBINATORICS PROBABILITY & COMPUTING, 2011, 20 (05) :749-752
[9]   Independent sets in association schemes [J].
Godsil, C. D. ;
Newman, M. W. .
COMBINATORICA, 2006, 26 (04) :431-443
[10]   SINGULARITIES, EXPANDERS AND TOPOLOGY OF MAPS. PART 2: FROM COMBINATORICS TO TOPOLOGY VIA ALGEBRAIC ISOPERIMETRY [J].
Gromov, Mikhail .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (02) :416-526