Nonlinear instability for the Navier-Stokes equations

被引:21
|
作者
Friedlander, S
Pavlovic, N
Shvydkoy, R
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
D O I
10.1007/s00220-006-1526-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is proved, using a bootstrap argument, that linear instability implies nonlinear instability for the incompressible Navier-Stokes equations in L-p for all p is an element of (1, infinity) and any finite or infinite domain in any dimension n.
引用
收藏
页码:335 / 347
页数:13
相关论文
共 50 条
  • [21] NAVIER-STOKES EQUATIONS ON THE β-PLANE
    Al-Jaboori, Mustafa A. H.
    Wirosoetisno, Djoko
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 16 (03): : 687 - 701
  • [22] TRANSFORMATION OF NAVIER-STOKES EQUATIONS
    ROGERS, DF
    GRANGER, RA
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (11): : 1331 - &
  • [23] FLUCTUATIONS IN NAVIER-STOKES EQUATIONS
    PAPANICOLAOU, GC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A236 - A236
  • [24] NAVIER-STOKES EQUATIONS PARADOX
    Ramm, Alexander G.
    REPORTS ON MATHEMATICAL PHYSICS, 2021, 88 (01) : 41 - 45
  • [25] STOCHASTIC NAVIER-STOKES EQUATIONS
    CAPINSKI, M
    CUTLAND, N
    ACTA APPLICANDAE MATHEMATICAE, 1991, 25 (01) : 59 - 85
  • [26] FRACTIONAL NAVIER-STOKES EQUATIONS
    Cholewa, Jan W.
    Dlotko, Tomasz
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (08): : 2967 - 2988
  • [27] Euler and Navier-Stokes equations
    Constantin, Peter
    PUBLICACIONS MATEMATIQUES, 2008, 52 (02) : 235 - 265
  • [28] On the Navier-Stokes equations on surfaces
    Pruess, Jan
    Simonett, Gieri
    Wilke, Mathias
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (03) : 3153 - 3179
  • [29] REGULARITY OF NAVIER-STOKES EQUATIONS
    Moise, Ioana
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2006, 19 (01) : 31 - 50
  • [30] Lectures on Navier-Stokes Equations
    Kunzinger, M.
    MONATSHEFTE FUR MATHEMATIK, 2021, 195 (04): : 763 - 764