Nonlinear instability for the Navier-Stokes equations

被引:21
作者
Friedlander, S
Pavlovic, N
Shvydkoy, R
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
D O I
10.1007/s00220-006-1526-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is proved, using a bootstrap argument, that linear instability implies nonlinear instability for the incompressible Navier-Stokes equations in L-p for all p is an element of (1, infinity) and any finite or infinite domain in any dimension n.
引用
收藏
页码:335 / 347
页数:13
相关论文
共 21 条
[1]  
[Anonymous], 1989, TRANSLATIONS MATH MO
[2]   Stable and unstable ideal plane flows [J].
Bardos, C ;
Guo, Y ;
Strauss, W .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2002, 23 (02) :149-164
[4]  
Cannone M, 2004, HANDBOOK OF MATHEMATICAL FLUID DYNAMICS, VOL 3, P161
[5]   INITIAL VALUE-PROBLEM FOR NAVIER-STOKES EQUATIONS WITH DATA IN LP [J].
FABES, EB ;
JONES, BF ;
RIVIERE, NM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1972, 45 (03) :222-&
[6]   Nonlinear instability in an ideal fluid [J].
Friedlander, S ;
Strauss, W ;
Vishik, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (02) :187-209
[7]  
Fujita H., 1962, REND SEMIN MAT U PAD, V32, P243
[9]   ANALYTICITY OF THE SEMIGROUP GENERATED BY THE STOKES OPERATOR IN LR SPACES [J].
GIGA, Y .
MATHEMATISCHE ZEITSCHRIFT, 1981, 178 (03) :297-329
[10]  
Henry D., 1981, GEOMETRIC THEORY SEM, DOI [10.1007/BFb0089647, DOI 10.1007/BFB0089647]