Pure-direct-projective modules

被引:3
|
作者
Alizade, Rafail [1 ]
Toksoy, Sultan Eylem [2 ]
机构
[1] Yasar Univ, Dept Math, Selcuk Yasar Campus, TR-35100 Izmir, Turkiye
[2] Hacettepe Univ, Dept Math, TR-06800 Beytepe Ankara, Turkiye
关键词
(Pure-)direct-projective modules; (pure-)projective modules; von Neumann regular rings; RINGS;
D O I
10.1142/S0219498824500105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and study the pure-direct-projective modules, that is the modules M every pure submodule A of which with M/A isomorphic to a direct summand of M is a direct summand of M. We characterize rings over which every right R-module is pure-direct-projective. We examine for which rings or under what conditions pure-direct-projective right R-modules are direct-projective, projective, quasi-projective, pure-projective, flat or injective. We prove that over a Noetherian ring every injective module is pure-direct-projective and a right hereditary ring R is right Noetherian if and only if every injective right R-module is pure-direct-projective. We obtain some properties of pure-direct-projective right R-modules which have DPSP and DPIP.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] A Characterization of Nonnil-Projective Modules
    Kim, Hwankoo
    Mahdou, Najib
    Oubouhou, El houssaine
    KYUNGPOOK MATHEMATICAL JOURNAL, 2024, 64 (01): : 1 - 14
  • [22] Almost Projective and Almost Injective Modules
    Abyzov, A. N.
    MATHEMATICAL NOTES, 2018, 103 (1-2) : 3 - 17
  • [23] An alternative perspective on pure-projectivity of modules
    Alagoz, Yusuf
    Durgun, Yilmaz
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2020, 14 (02): : 631 - 650
  • [24] Projective Envelopes of Finitely Generated Modules
    Parra, Rafael
    Rada, Juan
    ALGEBRA COLLOQUIUM, 2011, 18 : 801 - 806
  • [25] ABSOLUTELY E-PURE MODULES AND E-PURE SPLIT MODULES
    Yan Hangyu
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (01) : 207 - 220
  • [26] When every pure ideal is projective
    Hu, Jiangsheng
    Liu, Haiyu
    Geng, Yuxian
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (02)
  • [27] DC-projective dimensions, Foxby equivalence and SDC-projective modules
    Zhao, Liang
    Zhou, Yiqiang
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (06)
  • [28] A CHARACTERIZATION OF S1-PROJECTIVE MODULES
    Kim, Hwankoo
    Mahdou, Najib
    Oubouhou, El houssaine
    KOREAN JOURNAL OF MATHEMATICS, 2025, 33 (01): : 21 - 35
  • [29] The Ext-strongly Gorenstein projective modules
    Ren, Jie
    TURKISH JOURNAL OF MATHEMATICS, 2015, 39 (01) : 54 - 62
  • [30] A note on Gorenstein projective and Gorenstein flat modules
    Wang, Xinxin
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (14)