Numerical schemes for a class of tempered fractional integro-differential equations

被引:39
|
作者
Sultana, Farheen [1 ]
Singh, Deeksha [1 ]
Pandey, Rajesh K. [1 ]
Zeidan, Dia [2 ]
机构
[1] Indian Inst Technol BHU Varanasi, Dept Math Sci, Varanasi 221005, Uttar Pradesh, India
[2] German Jordanian Univ, Sch Basic Sci & Humanities, Amman, Jordan
关键词
Linear scheme; Quadratic scheme; Quadratic-Linear scheme; Tempered fractional integro-differential equation; Finite difference method; COLLOCATION METHODS; ELEMENT TECHNIQUE; DIFFUSION; CALCULUS; CONVERGENCE;
D O I
10.1016/j.apnum.2020.05.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a class of tempered fractional integro-differential equation of the Caputo type, a comparative study of three numerical schemes is presented in this paper. The schemes discussed are Linear, Quadratic and Quadratic-Linear schemes. Four numerical examples are considered to discuss error estimate and convergence order of the numerical schemes for different values of step-size h and the parameter lambda. Numerical results are presented through tables and figures which validate the analytical solution of the test examples. Further, the comparative performances of the presented numerical schemes are discussed. (C) 2020 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:110 / 134
页数:25
相关论文
共 50 条
  • [31] A CLASS OF SINGULAR INTEGRO-DIFFERENTIAL EQUATIONS
    ISAKHANOV, RS
    DOKLADY AKADEMII NAUK SSSR, 1960, 132 (02): : 264 - 267
  • [32] ON A NEW CLASS OF INTEGRO-DIFFERENTIAL EQUATIONS
    Kurth, Patrick
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2014, 26 (04) : 497 - 526
  • [33] CLASS OF NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS
    LEUNG, KV
    MANGERON, D
    OGUZTORE.MN
    STEIN, RB
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1973, 54 (05): : 699 - 705
  • [34] On a class of parabolic integro-differential equations
    Kohl, W
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2000, 19 (01): : 159 - 201
  • [35] ON ONE CLASS OF INTEGRO-DIFFERENTIAL EQUATIONS
    IANUSHAUSKAS, AI
    DOKLADY AKADEMII NAUK SSSR, 1989, 305 (03): : 545 - 547
  • [36] ON STABILITY OF A CLASS OF INTEGRO-DIFFERENTIAL EQUATIONS
    Pham Huu Anh Ngoc
    TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (02): : 407 - 425
  • [37] Ulam–Hyers–Rassias Stability for a Class of Fractional Integro-Differential Equations
    E. Capelas de Oliveira
    J. Vanterler da C. Sousa
    Results in Mathematics, 2018, 73
  • [38] Oscillation criteria for a certain class of fractional order integro-differential equations
    Asliyuce, Serkan
    Guvenilir, A. Feza
    Zafer, Agacik
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2017, 46 (02): : 199 - 207
  • [39] Numerical Solutions of Fourth-Order Fractional Integro-Differential Equations
    Yildirim, Ahmet
    Sezer, Sefa Anil
    Kaplan, Yasemin
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2010, 65 (12): : 1027 - 1032
  • [40] Numerical Analysis of Volterra Integro-differential Equations with Caputo Fractional Derivative
    Sudarshan Santra
    Jugal Mohapatra
    Iranian Journal of Science and Technology, Transactions A: Science, 2021, 45 : 1815 - 1824