Numerical schemes for a class of tempered fractional integro-differential equations

被引:39
|
作者
Sultana, Farheen [1 ]
Singh, Deeksha [1 ]
Pandey, Rajesh K. [1 ]
Zeidan, Dia [2 ]
机构
[1] Indian Inst Technol BHU Varanasi, Dept Math Sci, Varanasi 221005, Uttar Pradesh, India
[2] German Jordanian Univ, Sch Basic Sci & Humanities, Amman, Jordan
关键词
Linear scheme; Quadratic scheme; Quadratic-Linear scheme; Tempered fractional integro-differential equation; Finite difference method; COLLOCATION METHODS; ELEMENT TECHNIQUE; DIFFUSION; CALCULUS; CONVERGENCE;
D O I
10.1016/j.apnum.2020.05.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a class of tempered fractional integro-differential equation of the Caputo type, a comparative study of three numerical schemes is presented in this paper. The schemes discussed are Linear, Quadratic and Quadratic-Linear schemes. Four numerical examples are considered to discuss error estimate and convergence order of the numerical schemes for different values of step-size h and the parameter lambda. Numerical results are presented through tables and figures which validate the analytical solution of the test examples. Further, the comparative performances of the presented numerical schemes are discussed. (C) 2020 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:110 / 134
页数:25
相关论文
共 50 条
  • [21] On the stability of a class of splitting methods for integro-differential equations
    Araujo, A.
    Branco, J. R.
    Ferreira, J. A.
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (3-4) : 436 - 453
  • [22] Finite difference schemes for linear stochastic integro-differential equations
    Dareiotis, Konstantinos
    Leahy, James-Michael
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (10) : 3202 - 3234
  • [23] Numerical approach for the solution of hypersingular integro-differential equations
    Gulsu, Mustafa
    Ozturk, Yalcin
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 230 : 701 - 710
  • [24] A numerical method for a class of non-linear integro-differential equations on the half line
    Basile, M.
    Messina, E.
    Themistoclakis, W.
    Vecchio, A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (07) : 2354 - 2363
  • [25] Numerical analysis of Volterra integro-differential equations for viscoelastic rods and membranes
    Xu, Da
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 355 : 1 - 20
  • [26] Product integration techniques for generalized fractional integro-differential equations
    Kumar, Sunil
    Das, Subir
    Singh, Vineet Kumar
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2025, 76 (02):
  • [27] A qualitative study on generalized Caputo fractional integro-differential equations
    Kassim, Mohammed D.
    Abdeljawad, Thabet
    Shatanawi, Wasfi
    Ali, Saeed M.
    Abdo, Mohammed S.
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [28] An efficient numerical method based on ultraspherical polynomials for linear weakly singular fractional Volterra integro-differential equations
    Sajjadi, Sayed Arsalan
    Saberi Najafi, Hashem
    Aminikhah, Hossein
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (12) : 10293 - 10308
  • [29] A comparative study of three numerical schemes for solving Atangana–Baleanu fractional integro-differential equation defined in Caputo sense
    Deeksha Singh
    Farheen Sultana
    Rajesh K. Pandey
    Abdon Atangana
    Engineering with Computers, 2022, 38 : 149 - 168
  • [30] An efficient spline technique for solving time-fractional integro-differential equations
    Abbas, Muhammad
    Aslam, Sadia
    Abdullah, Farah Aini
    Riaz, Muhammad Bilal
    Gepreel, Khaled A.
    HELIYON, 2023, 9 (09)