Numerical schemes for a class of tempered fractional integro-differential equations

被引:40
作者
Sultana, Farheen [1 ]
Singh, Deeksha [1 ]
Pandey, Rajesh K. [1 ]
Zeidan, Dia [2 ]
机构
[1] Indian Inst Technol BHU Varanasi, Dept Math Sci, Varanasi 221005, Uttar Pradesh, India
[2] German Jordanian Univ, Sch Basic Sci & Humanities, Amman, Jordan
关键词
Linear scheme; Quadratic scheme; Quadratic-Linear scheme; Tempered fractional integro-differential equation; Finite difference method; COLLOCATION METHODS; ELEMENT TECHNIQUE; DIFFUSION; CALCULUS; CONVERGENCE;
D O I
10.1016/j.apnum.2020.05.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a class of tempered fractional integro-differential equation of the Caputo type, a comparative study of three numerical schemes is presented in this paper. The schemes discussed are Linear, Quadratic and Quadratic-Linear schemes. Four numerical examples are considered to discuss error estimate and convergence order of the numerical schemes for different values of step-size h and the parameter lambda. Numerical results are presented through tables and figures which validate the analytical solution of the test examples. Further, the comparative performances of the presented numerical schemes are discussed. (C) 2020 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:110 / 134
页数:25
相关论文
共 46 条
[1]   Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana-Baleanu fractional operator [J].
Abu Arqub, Omar ;
Maayah, Banan .
CHAOS SOLITONS & FRACTALS, 2018, 117 :117-124
[2]   A Numerical Scheme for a Class of Parametric Problem of Fractional Variational Calculus [J].
Agrawal, Om P. ;
Hasan, M. Mehedi ;
Tangpong, X. W. .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2012, 7 (02)
[3]  
[Anonymous], 2006, THEORY APPL FRACTION, DOI DOI 10.1016/S0304-0208(06)80001-0
[4]   A THEORETICAL BASIS FOR THE APPLICATION OF FRACTIONAL CALCULUS TO VISCOELASTICITY [J].
BAGLEY, RL ;
TORVIK, PJ .
JOURNAL OF RHEOLOGY, 1983, 27 (03) :201-210
[5]   Fractional diffusion models of option prices in markets with jumps [J].
Cartea, Alvaro ;
del-Castillo-Negrete, Diego .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 374 (02) :749-763
[7]   A finite difference/finite element technique with error estimate for space fractional tempered diffusion-wave equation [J].
Dehghan, Mehdi ;
Abbaszadeh, Mostafa .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (08) :2903-2914
[8]   Spectral element technique for nonlinear fractional evolution equation, stability and convergence analysis [J].
Dehghan, Mehdi ;
Abbaszadeh, Mostafa .
APPLIED NUMERICAL MATHEMATICS, 2017, 119 :51-66
[9]   Fourth-order numerical method for the space time tempered fractional diffusion-wave equation [J].
Dehghan, Mehdi ;
Abbaszadeh, Mostafa ;
Deng, Weihua .
APPLIED MATHEMATICS LETTERS, 2017, 73 :120-127
[10]   Solving Nonlinear Fractional Partial Differential Equations Using the Homotopy Analysis Method [J].
Dehghan, Mehdi ;
Manafian, Jalil ;
Saadatmandi, Abbas .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (02) :448-479