Stability and decoherence of optical bipolaron in symmetric quantum dot

被引:0
作者
Fotue, A. J. [1 ]
Djomou, J. -R. D. [1 ]
Kenfack, S. C. [1 ]
Fobasso, M. F. C. [1 ]
Fai, L. C. [1 ]
机构
[1] Univ Dschang, Fac Sci, Dept Phys, Unite Rech Matiere Condensee Elect & Traitement S, POB 67, Dschang, Cameroon
关键词
ELECTRON; RELAXATION; POLARON; STATE;
D O I
10.1140/epjp/s13360-020-00835-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Optical bipolaron's stability and decoherence confined in the symmetric quantum dot are investigated utilizing the modified Lee, Low, and Pines variational method. The binding energy of optical bipolaron in symmetrical quantum dot systems is obtained by computing the energy of the fundamental state, the energy of the ground state of the single polaron, and the prime state excited energy. The formation of the bipolaron in quantum dot structures is thus obtained. Optical bipolaron stability appears to be quite sensitive to the dimensionality of the quantum dot and the material, where alpha and eta material parameters are considered. By investigating information processing, it is possible to compute Shannon's entropy to study a qubit's decoherence when in the superimposed state of the fundamental and the prime state excited. We see that decoherence time grows and shrinks with the dielectric constant and the dispersion coefficient. Thus, there exists a threshold dielectric constant and dispersion coefficient which maximizes decoherence time. This threshold dielectric constant and dispersion coefficient increases with the reduction in electron-phonon coupling. This study gives a guideline for the appropriate materials used in the construction of nanodevice.
引用
收藏
页数:14
相关论文
共 33 条
[1]   Decoherence and programmable quantum computation [J].
Barnes, JP ;
Warren, WS .
PHYSICAL REVIEW A, 1999, 60 (06) :4363-4374
[2]   INTRINSIC MECHANISM FOR THE POOR LUMINESCENCE PROPERTIES OF QUANTUM-BOX SYSTEMS [J].
BENISTY, H ;
SOTOMAYORTORRES, CM ;
WEISBUCH, C .
PHYSICAL REVIEW B, 1991, 44 (19) :10945-10948
[3]   PHONON-SCATTERING AND ENERGY RELAXATION IN 2-DIMENSIONAL, ONE-DIMENSIONAL, AND ZERO-DIMENSIONAL ELECTRON GASES [J].
BOCKELMANN, U ;
BASTARD, G .
PHYSICAL REVIEW B, 1990, 42 (14) :8947-8951
[4]   Integrated nanoelectronics for the future [J].
Chau, Robert ;
Doyle, Brian ;
Datta, Suman ;
Kavalieros, Jack ;
Zhang, Kevin .
NATURE MATERIALS, 2007, 6 (11) :810-812
[5]  
Chen SH, 2009, CHINESE J ELECTRON, V18, P262
[6]   Relative stability of polarons and bipolarons in emeraldine oligomers: a quantum chemical study [J].
de Oliveira, ZT ;
dos Santos, MC .
SOLID STATE COMMUNICATIONS, 2000, 114 (01) :49-53
[7]   Bipolaron in a quasi-0D quantum dot [J].
Fai, L. C. ;
Fomethe, A. ;
Fotue, A. J. ;
Mborong, V. B. ;
Domngang, S. ;
Issofa, N. ;
Tchoffo, M. .
SUPERLATTICES AND MICROSTRUCTURES, 2008, 43 (01) :44-52
[8]  
Fai LC, 2014, THEORY POLARONS EXCI
[9]   Laser light and external magnetic field control of polaron in asymmetric quantum dot [J].
Fobasso, M. F. C. ;
Fotue, A. J. ;
Kenfack, S. C. ;
Ekengue, C. M. ;
Ngoufack, C. D. G. ;
Akay, D. ;
Fai, L. C. .
SUPERLATTICES AND MICROSTRUCTURES, 2019, 129 :77-90
[10]   Partly noiseless encoding of quantum information in quantum dot arrays against phonon-induced pure dephasing [J].
Grodecka, A ;
Machnikowski, P .
PHYSICAL REVIEW B, 2006, 73 (12)