Recent development of carbon electrode materials for electrochemical supercapacitors

被引:27
|
作者
Zhou, Qihang [1 ]
Yao, Haoyi [1 ]
机构
[1] Yunnan Normal Univ, Kunming 650500, Peoples R China
关键词
Supercapacitors; Carbon; Self-doping; Foreign-doping; POROUS CARBON; MESOPOROUS CARBON; GRAPHENE OXIDE; ENERGY-STORAGE; PERFORMANCE; FUNCTIONALIZATION; NANOMATERIALS; FABRICATION; NANOFIBERS;
D O I
10.1016/j.egyr.2022.09.167
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Supercapacitors have gained much attention due to their remarkable merits such as stable cycle performance, high power density and excellent charge and discharge performance at high rate. From this perspective, carbon-based materials are widely explored as the active electrode materials for supercapacitors by taking advantages of hierarchical porous structure, excellent chemical stability, multistage pore structure, high surface area, and excellent conductivity. Various studies have explored many methods to utilize carbon-based electrodes. The large amount of defects inside carbon materials including functional groups, heteroatoms, name as foreign-doping, can provide pseudocapacitance. Meanwhile, self-doping (voids, vacancies, defects, etc.) may also enhance the electric double-layer capacitance. In this context, a brief overview of carbon materials for supercapacitor is expounded, including their characteristics, development process and the future challenges, providing a referential guide to those new to this field.(c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:656 / 661
页数:6
相关论文
共 50 条
  • [1] Recent design and control of carbon materials for supercapacitors
    Lv, Song
    Ma, Liya
    Shen, Xinyu
    Tong, Hua
    JOURNAL OF MATERIALS SCIENCE, 2021, 56 (03) : 1919 - 1942
  • [2] A review of negative electrode materials for electrochemical supercapacitors
    Lu XueFeng
    Li GaoRen
    Tong YeXiang
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2015, 58 (11) : 1799 - 1808
  • [3] Recent progress in electrode materials for micro-supercapacitors
    Xu, Yuanyuan
    Yu, Sheng
    Johnson, Hannah M.
    Wu, Yutong
    Liu, Xiang
    Fang, Baizeng
    Zhang, Yi
    ISCIENCE, 2024, 27 (02)
  • [4] Recent Advancements in Electrode Materials for the High-performance Electrochemical Supercapacitors: A Review
    Chen, Shen-Ming
    Ramachandran, Rasu
    Mani, Veerappan
    Saraswathi, Ramiah
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2014, 9 (08): : 4072 - 4085
  • [5] Biomass derived nitrogen doped carbon with porous architecture as efficient electrode materials for supercapacitors
    Xuan, Cuijuan
    Peng, Zongkai
    Wang, Jie
    Lei, Wen
    Xia, Kedong
    Wu, Zexing
    Xiao, Weiping
    Wang, Deli
    CHINESE CHEMICAL LETTERS, 2017, 28 (12) : 2227 - 2230
  • [6] Synthesis and electrochemical properties of nanoporous carbon electrode materials for supercapacitors
    Mateyshina, Yulia
    Ukhina, Arina
    Brezhneva, Larisa
    Uvarov, Nikolai
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 707 : 337 - 340
  • [7] Improved Electrochemical Performance of Polyindole/Carbon Nanotubes Composite as Electrode Material for Supercapacitors
    Cai, Zhi-Jiang
    Zhang, Qin
    Song, Xian-You
    ELECTRONIC MATERIALS LETTERS, 2016, 12 (06) : 830 - 840
  • [8] Research on Carbon-Based Electrode Materials for Supercapacitors
    Li Xue-Qin
    Chang Lin
    Zhao Shen-Long
    Hao Chang-Long
    Lu Chen-Guang
    Zhu Yi-Hua
    Tang Zhi-Yong
    ACTA PHYSICO-CHIMICA SINICA, 2017, 33 (01) : 130 - 148
  • [9] A review of negative electrode materials for electrochemical supercapacitors
    LU XueFeng
    LI GaoRen
    TONG YeXiang
    Science China(Technological Sciences), 2015, (11) : 1799 - 1808
  • [10] Synthesis and electrochemical properties of the electrode materials for supercapacitors
    Mladenov, M.
    Petrov, N.
    Budinova, T.
    Tsyntsarski, B.
    Petrov, T.
    Kovacheva, D.
    Raicheff, R.
    BULGARIAN CHEMICAL COMMUNICATIONS, 2011, 43 (01): : 125 - 132