Novel regulatory system nemRA-gloA for electrophile reduction in Escherichia coli K-12

被引:40
作者
Lee, Changhan [1 ]
Shin, Jongcheol [1 ]
Park, Chankyu [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Biol Sci, Taejon 305701, South Korea
基金
新加坡国家研究基金会;
关键词
OLD YELLOW ENZYME; QUINONE OXIDOREDUCTASE; GLYOXALASE I; TRANSCRIPTIONAL ACTIVATION; CRYSTAL-STRUCTURE; DISULFIDE BONDS; REDOX; GLUTATHIONE; METHYLGLYOXAL; BIOSYNTHESIS;
D O I
10.1111/mmi.12192
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Electrophilic compounds such as glyoxals, which are toxic due to their reactive carbonyl group, are generated in vivo through various pathways. In this study, we obtained evidence indicating that the nemRA operon, previously reported to encode a repressor and the N-ethylmaleimide reductase, respectively, is co-transcribed with the 3-proximal gloA gene encoding glyoxalase I. The operon is not only involved in cytosolic detoxification but is also regulated by electrophiles such as quinones and glyoxals. A gel mobility shift assay revealed that purified NemR repressor bound to DNA was dissociated upon interaction with quinones and glyoxals, while their reduced forms were ineffective. The cysteines of NemR at 21 and 116 were essential in sensing electrophiles in vivo and in vitro. Reversible intermolecular disulphide bonds were observed with a reducing agent as well as with electrophiles. DNA binding affinity reduced by glyoxal was also increased with a reducing agent. The NemA reductase, an FMN-containing enzyme, exhibited catalytic activity toward various electrophiles including quinones, while GloA played a major role in glyoxal detoxification. Therefore, we propose that cells have a cytosolic system consisting of the nemRAgloA operon for the reduction of electrophiles, especially quinones and glyoxals, to maintain an appropriate intracellular redox balance.
引用
收藏
页码:395 / 412
页数:18
相关论文
共 75 条
[1]   Chromate-reducing properties of soluble Flavoproteins from Pseudomonas putida and Escherichia coli [J].
Ackerley, DF ;
Gonzalez, CF ;
Park, CH ;
Blake, R ;
Keyhan, A ;
Matin, A .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, 70 (02) :873-882
[2]   Structural and biochemical evidence for an enzymatic quinone redox cycle in Escherichia coli [J].
Adams, MA ;
Jia, ZC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (09) :8358-8363
[3]   A SIMPLIFIED METHOD FOR THE PURIFICATION OF HUMAN RED-BLOOD-CELL GLYOXALASE .1. CHARACTERISTICS, IMMUNOBLOTTING, AND INHIBITOR STUDIES [J].
ALLEN, RE ;
LO, TWC ;
THORNALLEY, PJ .
JOURNAL OF PROTEIN CHEMISTRY, 1993, 12 (02) :111-119
[4]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[5]   MOLECULAR CHARACTERIZATION OF THE SOXRS GENES OF ESCHERICHIA-COLI - 2 GENES CONTROL A SUPEROXIDE STRESS REGULON [J].
AMABILECUEVAS, CF ;
DEMPLE, B .
NUCLEIC ACIDS RESEARCH, 1991, 19 (16) :4479-4484
[6]   MAPPING OF GSHA, A GENE FOR BIOSYNTHESIS OF GLUTATHIONE IN ESCHERICHIA-COLI K12 [J].
APONTOWEIL, P ;
BERENDS, W .
MOLECULAR & GENERAL GENETICS, 1975, 141 (02) :91-95
[7]   GLUTATHIONE BIOSYNTHESIS IN ESCHERICHIA-COLI K-12 - PROPERTIES OF ENZYMES AND REGULATION [J].
APONTOWEIL, P ;
BERENDS, W .
BIOCHIMICA ET BIOPHYSICA ACTA, 1975, 399 (01) :1-9
[8]   Disulfide bonds are generated by quinone reduction [J].
Bader, MW ;
Xie, T ;
Yu, CA ;
Bardwell, JCA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (34) :26082-26088
[9]   EXPERIMENTAL EVOLUTION OF A METABOLIC PATHWAY FOR ETHYLENE-GLYCOL UTILIZATION BY ESCHERICHIA-COLI [J].
BORONAT, A ;
CABALLERO, E ;
AGUILAR, J .
JOURNAL OF BACTERIOLOGY, 1983, 153 (01) :134-139
[10]   ADVANCED PROTEIN GLYCOSYLATION IN DIABETES AND AGING [J].
BROWNLEE, M .
ANNUAL REVIEW OF MEDICINE, 1995, 46 :223-234