Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with nonlinear diffusion

被引:95
作者
Zhang, Qingshan [1 ]
Li, Yuxiang [1 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 211189, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Chemotaxis; Navier-Stokes equation; Nonlinear diffusion; Global existence; WELL-POSEDNESS; BOUNDEDNESS; MODEL; EXISTENCE; EQUATIONS;
D O I
10.1016/j.jde.2015.05.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an initial boundary value problem for the incompressible chemotaxis-Navier-Stokes equations generalizing the porous-medium-type diffusion model {n(t) + u center dot del n = Delta n(m) - del center dot(n chi(c)del c), x is an element of Omega, t > 0, c(t) + u center dot del c = Delta c - nf(c), x is an element of Omega, t > 0, u(t) + k(u center dot del)u= Delta u +del P + N del phi, x is an element of Omega, t > 0, del center dot u = 0. x is an element of Omega, t > 0 in a bounded convex domain Omega subset of R-3. Here K is an element of R, phi is an element of W-1,W-infinity(Omega) , 0 < chi is an element of C-2 ([0, infinity)) and 0 <= f is an element of C-1 ([0, infinity)) with f(0) = 0. It is proved that under appropriate structural assumptions on f and chi, for any choice of m >= 2/3 and all sufficiently smooth initial data (n(0), C-0, u(0)) the model possesses at least one global weak solution. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:3730 / 3754
页数:25
相关论文
共 34 条
[1]  
Alikakos N.D., 1979, Commun. Partial Differ. Equ., V4, P827, DOI [10.1080/03605307908820113, DOI 10.1080/03605307908820113]
[2]  
[Anonymous], 2007, BIRKHAUSER ADV TEXTS
[3]   Global Existence and Temporal Decay in Keller-Segel Models Coupled to Fluid Equations [J].
Chae, Myeongju ;
Kang, Kyungkeun ;
Lee, Jihoon .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (07) :1205-1235
[4]   EXISTENCE OF SMOOTH SOLUTIONS TO COUPLED CHEMOTAXIS-FLUID EQUATIONS [J].
Chae, Myeongju ;
Kang, Kyungkeun ;
Lee, Jihoon .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (06) :2271-2297
[5]   CHEMOTAXIS-FLUID COUPLED MODEL FOR SWIMMING BACTERIA WITH NONLINEAR DIFFUSION: GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR [J].
Di Francesco, Marco ;
Lorz, Alexander ;
Markowich, Peter A. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (04) :1437-1453
[6]   Self-concentration and large-scale coherence in bacterial dynamics [J].
Dombrowski, C ;
Cisneros, L ;
Chatkaew, S ;
Goldstein, RE ;
Kessler, JO .
PHYSICAL REVIEW LETTERS, 2004, 93 (09) :098103-1
[7]   A Note on Global Existence for the Chemotaxis-Stokes Model with Nonlinear Diffusion [J].
Duan, Renjun ;
Xiang, Zhaoyin .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (07) :1833-1852
[8]   Global Solutions to the Coupled Chemotaxis-Fluid Equations [J].
Duan, Renjun ;
Lorz, Alexander ;
Markowich, Peter .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (09) :1635-1673
[9]   SOLUTIONS FOR SEMILINEAR PARABOLIC EQUATIONS IN LP AND REGULARITY OF WEAK SOLUTIONS OF THE NAVIER-STOKES SYSTEM [J].
GIGA, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 62 (02) :186-212
[10]   A user's guide to PDE models for chemotaxis [J].
Hillen, T. ;
Painter, K. J. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 58 (1-2) :183-217