Artificial intelligence and its applications in digital hematopathology

被引:4
作者
Hu, Yongfei [1 ,2 ]
Luo, Yinglun [1 ]
Tang, Guangjue [1 ]
Huang, Yan [3 ]
Kang, Juanjuan [4 ]
Wang, Dong [1 ]
机构
[1] Southern Med Univ, Sch Basic Med Sci, Dept Bioinformat, Guangzhou 510515, Peoples R China
[2] Southern Med Univ, Dermatol Hosp, Guangzhou, Peoples R China
[3] Southern Med Univ, Canc Res Inst, Sch Basic Med Sci, Guangzhou, Peoples R China
[4] Southern Med Univ, Affiliated Foshan Matern & Child Healthcare Hosp, Foshan Matern & Child Healthcare Hosp, Foshan, Peoples R China
来源
BLOOD SCIENCE | 2022年 / 4卷 / 03期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Artificial intelligence; Hematopathology; Whole-slide imaging; LEUKEMIA DETECTION; NEURAL-NETWORKS; CLASSIFICATION; DIAGNOSIS; SYSTEM; CELLS;
D O I
10.1097/BS9.0000000000000130
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The advent of whole-slide imaging, faster image data generation, and cheaper forms of data storage have made it easier for pathologists to manipulate digital slide images and interpret more detailed biological processes in conjunction with clinical samples. In parallel, with continuous breakthroughs in object detection, image feature extraction, image classification and image segmentation, artificial intelligence (AI) is becoming the most beneficial technology for high-throughput analysis of image data in various biomedical imaging disciplines. Integrating digital images into biological workflows, advanced algorithms, and computer vision techniques expands the biologist's horizons beyond the microscope slide. Here, we introduce recent developments in AI applied to microscopy in hematopathology. We give an overview of its concepts and present its applications in normal or abnormal hematopoietic cells identification. We discuss how AI shows great potential to push the limits of microscopy and enhance the resolution, signal and information content of acquired data. Its shortcomings are discussed, as well as future directions for the field.
引用
收藏
页码:136 / 142
页数:7
相关论文
共 54 条
[1]   Automated Screening System for Acute Myelogenous Leukemia Detection in Blood Microscopic Images [J].
Agaian, Sos ;
Madhukar, Monica ;
Chronopoulos, Anthony T. .
IEEE SYSTEMS JOURNAL, 2014, 8 (03) :995-1004
[2]   Characterization and automatic screening of reactive and abnormal neoplastic B lymphoid cells from peripheral blood [J].
Alferez, S. ;
Merino, A. ;
Bigorra, L. ;
Rodellar, J. .
INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, 2016, 38 (02) :209-219
[3]   Automatic Detection and Quantification of WBCs and RBCs Using Iterative Structured Circle Detection Algorithm [J].
Alomari, Yazan M. ;
Abdullah, Siti Norul Huda Sheikh ;
Azma, Raja Zaharatul ;
Omar, Khairuddin .
COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2014, 2014
[4]   LEARNING LONG-TERM DEPENDENCIES WITH GRADIENT DESCENT IS DIFFICULT [J].
BENGIO, Y ;
SIMARD, P ;
FRASCONI, P .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (02) :157-166
[5]  
Bergamaschi G, 2004, HAEMATOLOGICA, V89, P5
[6]   Feature Analysis and Automatic Identification of Leukemic Lineage Blast Cells and Reactive Lymphoid Cells from Peripheral Blood Cell Images [J].
Bigorra, Laura ;
Merino, Anna ;
Alferez, Santiago ;
Rodellar, Jose .
JOURNAL OF CLINICAL LABORATORY ANALYSIS, 2017, 31 (02)
[7]   Automatic recognition of different types of acute leukaemia in peripheral blood by image analysis [J].
Boldu, Laura ;
Merino, Anna ;
Alferez, Santiago ;
Molina, Angel ;
Acevedo, Andrea ;
Rodellar, Jose .
JOURNAL OF CLINICAL PATHOLOGY, 2019, 72 (11) :755-761
[8]   Prospective identification of hematopoietic lineage choice by deep learning [J].
Buggenthin, Felix ;
Buettner, Florian ;
Hoppe, Philipp S. ;
Endele, Max ;
Kroiss, Manuel ;
Strasser, Michael ;
Schwarzfischer, Michael ;
Loeffler, Dirk ;
Kokkaliaris, Konstantinos D. ;
Hilsenbeck, Oliver ;
Schroeder, Timm ;
Theis, Fabian J. ;
Marr, Carsten .
NATURE METHODS, 2017, 14 (04) :403-+
[9]  
BUTTURINI A, 1990, LEUKEMIA, V4, P138
[10]   Multi-column deep neural network for traffic sign classification [J].
Ciresan, Dan ;
Meier, Ueli ;
Masci, Jonathan ;
Schmidhuber, Juergen .
NEURAL NETWORKS, 2012, 32 :333-338