A new form of strain gradient elasticity

被引:0
|
作者
Zhao, Bing [1 ,2 ]
Zheng, Yingren [2 ]
Yan, Xiaoqiang [1 ,3 ]
Hou, Jialin [1 ]
机构
[1] Changsha Univ Sci & Technol, Sch Civil Engn & Architecture, Changsha 410004, Hunan, Peoples R China
[2] Logist Engn Univ PLA, Dept Architectural Engn, Chongqing 400041, Peoples R China
[3] Ningxia Univ, Sch Math & Comp Sci, Yinchuan 750021, Peoples R China
来源
STRUCTURAL INTEGRITY AND MATERIALS AGEING IN EXTREME CONDITIONS | 2010年
关键词
Strain gradient; Elasticity; Constitutive; PLASTICITY;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Following the definition of internal characteristic length vector, the strain energy density is postulated to be dependent on both the strain tensor and the strain gradient tensor. A new form of strain gradient elasticity constitutive relation is derived directly from the strain energy density expansion method at the initial state. When internal characteristic length vector is zero, the expressions can be degenerated to the classical elastic theory. Based on the principle of virtual work, the variational principle, boundary condition and finite element formulation of the new form of strain gradient elasticity are given.
引用
收藏
页码:311 / 316
页数:6
相关论文
共 50 条
  • [1] Strain gradient elasticity and stress fibers
    Lazopoulos, K. A.
    Lazopoulos, A. K.
    ARCHIVE OF APPLIED MECHANICS, 2013, 83 (09) : 1371 - 1381
  • [2] Strain gradient elasticity and stress fibers
    K. A. Lazopoulos
    A. K. Lazopoulos
    Archive of Applied Mechanics, 2013, 83 : 1371 - 1381
  • [3] SIZE-DEPENDENT PIEZOELECTRICITY AND ELASTICITY DUE TO THE ELECTRIC FIELD-STRAIN GRADIENT COUPLING AND STRAIN GRADIENT ELASTICITY
    Xu, Liang
    Shen Shengping
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2013, 5 (02)
  • [4] Fracture in strain gradient elasticity
    Hwang, KC
    Cuo, TF
    Huang, Y
    Chen, JY
    METALS AND MATERIALS-KOREA, 1998, 4 (04): : 593 - 600
  • [5] Couple stress based strain gradient theory for elasticity
    Yang, F
    Chong, ACM
    Lam, DCC
    Tong, P
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2002, 39 (10) : 2731 - 2743
  • [6] Fractional derivatives and strain gradient elasticity
    K. A. Lazopoulos
    A. K. Lazopoulos
    Acta Mechanica, 2016, 227 : 823 - 835
  • [7] A new homogenization method based on a simplified strain gradient elasticity theory
    H. M. Ma
    X. -L. Gao
    Acta Mechanica, 2014, 225 : 1075 - 1091
  • [8] Symmetry conditions in strain gradient elasticity
    Gusev, Andrei A.
    Lurie, Sergey A.
    MATHEMATICS AND MECHANICS OF SOLIDS, 2017, 22 (04) : 683 - 691
  • [9] On the strain gradient elasticity theory for isotropic materials
    Fu, Guangyang
    Zhou, Shenjie
    Qi, Lu
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2020, 154
  • [10] A new meshfree method for modeling strain gradient microbeams
    Sayyidmousavi, Alireza
    Daneshmand, Farhang
    Foroutan, Mehrdad
    Fawaz, Zouheir
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2018, 40 (08)