ON COMMUTATIVITY OF PRIME NEAR-RINGS WITH MULTIPLICATIVE GENERALIZED DERIVATION

被引:1
作者
Bedir, Zeliha [1 ]
Golbasi, Oznur [1 ]
机构
[1] Cumhuriyet Univ, Fac Sci, Dept Math, TR-58140 Sivas, Turkey
来源
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS | 2019年 / 68卷 / 01期
关键词
Prime near-ring; derivation; multiplicative generalized derivation;
D O I
10.31801/cfsuasmas.443732
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we shall prove that 3 near-ring N is commutative ring, if any one of the following conditions are satis.ed: (i) f(N) subset of Z; (ii) f([x; y]) = 0; (iii) f([x; y]) = +/-[x; y]; (iv) f([x; y]) = +/-(xoy); (v) f([x; y]) = [f(x); y]; (vi) f([x; y]) = [x; f(y)]; (vii) f([x; y]) = [d(x); y]; (viii) f([x; y]) = d(x)oy;(ix) [f(x); y] is an element of Z for all x; y is an element of N where f is a nonzero multiplicative generalized derivation of N associated with a multiplicative derivation d.
引用
收藏
页码:209 / 221
页数:13
相关论文
共 50 条
  • [31] Note on sigma-derivations in Near-rings and Reduced Near-rings
    Asokkumar, Arjunan
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2007, 47 (01): : 151 - 154
  • [32] ON TWO COMMUTATIVITY CRITERIA FOR δ-PRIME RINGS
    Kular, Kamil
    Skrzynski, Marcin
    [J]. PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2023, 113 (127): : 83 - 92
  • [33] ON LEFT MULTIPLIERS AND THE COMMUTATIVITY OF PRIME RINGS
    Ashraf, Mohammad
    Ali, Shakir
    [J]. DEMONSTRATIO MATHEMATICA, 2008, 41 (04) : 763 - 771
  • [34] On derivations and commutativity of prime rings with involution
    Ali, Shakir
    Dar, Nadeem Ahmed
    Asci, Mustafa
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2016, 23 (01) : 9 - 14
  • [35] On "On derivations and commutativity of prime rings with involution"
    Almahdi, Fuad Ali Ahmed
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (03) : 331 - 333
  • [36] SEMIPRIME NEAR-RINGS WITH ORTHOGONAL DERIVATIONS
    Park, Kyoo-Hong
    Jung, Yong-Soo
    [J]. JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2006, 13 (04): : 303 - 310
  • [37] Some identities related to multiplicative (generalized)-derivations in prime and semiprime rings
    Dhara, Basudeb
    Kar, Sukhendu
    Bera, Nripendu
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (02) : 1497 - 1516
  • [38] Some identities related to multiplicative (generalized)-derivations in prime and semiprime rings
    Basudeb Dhara
    Sukhendu Kar
    Nripendu Bera
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 1497 - 1516
  • [39] Derivations vanishing on commutators with generalized derivation of order 2 in prime rings
    Tiwari, S. K.
    Sharma, R. K.
    Dhara, B.
    [J]. COMMUNICATIONS IN ALGEBRA, 2017, 45 (08) : 3542 - 3554
  • [40] On derivations involving prime ideals and commutativity in rings
    A. Mamouni
    L. Oukhtite
    M. Zerra
    [J]. São Paulo Journal of Mathematical Sciences, 2020, 14 : 675 - 688