Norm estimates of complex symmetric operators applied to quantum systems

被引:34
作者
Prodan, E [1 ]
Garcia, SR
Putinar, M
机构
[1] Princeton Univ, PRISM, Princeton, NJ 08544 USA
[2] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2006年 / 39卷 / 02期
关键词
D O I
10.1088/0305-4470/39/2/009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper communicates recent results in the theory of complex symmetric operators and shows, through two non-trivial examples, their potential usefulness in the study of Schrodinger operators. In particular, we propose a formula for computing the norm of a compact complex symmetric operator. This observation is applied to two concrete problems related to quantum mechanical systems. First, we give sharp estimates on the exponential decay of the resolvent and the single-particle density matrix for Schrodinger operators with spectral gaps. Second, we provide new ways of evaluating the resolvent norm for Schrodinger operators appearing in the complex scaling theory of resonances.
引用
收藏
页码:389 / 400
页数:12
相关论文
共 35 条