Benchmarking Deep Learning for Time Series: Challenges and Directions

被引:0
作者
Huang, Xinyuan [1 ]
Fox, Geoffrey C. [2 ]
Serebryakov, Sergey [3 ]
Mohan, Ankur [4 ]
Morkisz, Pawel [5 ,6 ]
Dutta, Debojyoti [1 ]
机构
[1] Cisco Syst, San Jose, CA 95134 USA
[2] Indiana Univ, Bloomington, IN USA
[3] Hewlett Packard Enterprise, San Jose, CA USA
[4] In Q Tel, Arlington, VA USA
[5] Nvidia, Warsaw, Poland
[6] AGH Univ Sci & Technol, Krakow, Poland
来源
2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA) | 2019年
关键词
machine learning; deep learning; time series; performance; benchmark; CLASSIFICATION;
D O I
10.1109/bigdata47090.2019.9005496
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning for time series is an emerging area with close ties to industry, yet under represented in performance benchmarks for machine learning systems. In this paper, we present a landscape of deep learning applications applied to time series, and discuss the challenges and directions towards building a robust performance benchmark of deep learning workloads for time series data.
引用
收藏
页码:5679 / 5682
页数:4
相关论文
共 59 条
  • [1] Time-series clustering - A decade review
    Aghabozorgi, Saeed
    Shirkhorshidi, Ali Seyed
    Teh Ying Wah
    [J]. INFORMATION SYSTEMS, 2015, 53 : 16 - 38
  • [2] AL-Jallad N. T., 2017, INT J ADV COMPUTER S, V8, DOI [10.14569/IJACSA.2017.080945, DOI 10.14569/IJACSA.2017.080945]
  • [3] [Anonymous], 2016, INT C LEARN REPR
  • [4] [Anonymous], 2019, ARXIV191102549
  • [5] [Anonymous], 2018, P INT C MACH LEARN
  • [6] [Anonymous], ARXIV181103711
  • [7] Arvin AM, 2009, LIVE VARIOLA VIRUS: CONSIDERATIONS FOR CONTINUING RESEARCH, P9
  • [8] A Survey of Deep Learning Methods for Cyber Security
    Berman, Daniel S.
    Buczak, Anna L.
    Chavis, Jeffrey S.
    Corbett, Cherita L.
    [J]. INFORMATION, 2019, 10 (04)
  • [9] Binkowski M., 2017, P TIM SER WORKSH INT, P580
  • [10] The Opportunity challenge: A benchmark database for on-body sensor-based activity recognition
    Chavarriaga, Ricardo
    Sagha, Hesam
    Calatroni, Alberto
    Digumarti, Sundara Tejaswi
    Troester, Gerhard
    Millan, Jose del R.
    Roggen, Daniel
    [J]. PATTERN RECOGNITION LETTERS, 2013, 34 (15) : 2033 - 2042