Maps preserving the local spectrum of skew-product of operators

被引:17
作者
Abdelali, Z. [1 ]
Achchi, A. [1 ]
Marzouki, R. [1 ]
机构
[1] Univ Mohammed 5, Fac Sci, Dept Math, Rabat, Morocco
关键词
Nonlinear preservers; Local spectrum; LINEAR-MAPS; RADIUS;
D O I
10.1016/j.laa.2015.07.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H and H be infinite dimensional complex Hilbert spaces and let B(H) be the algebra of all bounded linear operators on H. Let sigma(T)(h) denote the local spectrum of an operator T is an element of B(H) at any vector h is an element of H, and fix two nonzero vectors h(0) is an element of H and k(0) is an element of H. We show that if a map phi : B(H) -> B(K) has a range containing all operators of rank at most two and satisfies sigma(TS*) (h(0)) = sigma(phi)(T)phi(S)* (k(0)) for all T, S is an element of B(H), then there exist two unitary operators U and V in B(H,K) such that Uh(0) = alpha k(0) for some nonzero alpha is an element of C and phi (T) = UTV* for all T is an element of B(H). We also described maps phi : B(H) -> B(K) satisfying sigma(TS*T)(h(0)) = sigma phi(T) phi(S)*phi(T) (k(0)) for all T, S is an element of B(H), and with the range containing all operators of rank at most four. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:58 / 71
页数:14
相关论文
共 22 条
[1]  
Aiena P., 2004, FREDHOLM LOCAL SPECT
[2]   Rank-preserving multiplicative maps on B(X) [J].
An, GM ;
Hou, JC .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 342 (1-3) :59-78
[3]  
Bhatia R, 1999, STUD MATH, V134, P99
[4]  
Bourhim A., 2013, CONT MATH, V638
[5]  
Bourhim A., 2014, GLASG MATH J
[6]   Additive maps preserving local spectrum [J].
Bourhim, Abdellatif ;
Ransford, Thomas .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 55 (03) :377-385
[7]   Maps preserving the local spectrum of triple product of operators [J].
Bourhim, Abdellatif ;
Mashreghi, Javad .
LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (04) :765-773
[8]   Local Spectral Radius Preservers [J].
Bourhim, Abdellatif ;
Mashreghi, Javad .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2013, 76 (01) :95-104
[9]   Linear maps on Mn(C) preserving the local spectral radius [J].
Bourhim, Abdellatif ;
Miller, Vivien G. .
STUDIA MATHEMATICA, 2008, 188 (01) :67-75
[10]   Local spectrum and local spectral radius of an operator at a fixed vector [J].
Bracic, Janko ;
Mueller, Vladimir .
STUDIA MATHEMATICA, 2009, 194 (02) :155-162