A Generalization of the Cayley-Hamilton Theorem

被引:0
|
作者
Chen, Lizhou [1 ]
机构
[1] Fudan Univ, Sch Philosophy, Shanghai 200433, Peoples R China
来源
AMERICAN MATHEMATICAL MONTHLY | 2012年 / 119卷 / 04期
关键词
D O I
10.4169/amer.math.monthly.119.04.340
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A = [a(ij)](nxn) and B = [b(ij)](nxn) be two commuting square matrices of order n over an arbitrary commutative ring. We prove that the determinant of the matrix [b(ij)A - a(ij)B](nxn) which is regarded as an n x n block matrix with pairwise commuting entries, is exactly equal to the n x n zero matrix. If B is the identity matrix, then the result is equivalent to the Cayley-Hamilton theorem.
引用
收藏
页码:340 / 342
页数:3
相关论文
共 50 条