A Generalization of the Cayley-Hamilton Theorem

被引:0
|
作者
Chen, Lizhou [1 ]
机构
[1] Fudan Univ, Sch Philosophy, Shanghai 200433, Peoples R China
来源
AMERICAN MATHEMATICAL MONTHLY | 2012年 / 119卷 / 04期
关键词
D O I
10.4169/amer.math.monthly.119.04.340
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A = [a(ij)](nxn) and B = [b(ij)](nxn) be two commuting square matrices of order n over an arbitrary commutative ring. We prove that the determinant of the matrix [b(ij)A - a(ij)B](nxn) which is regarded as an n x n block matrix with pairwise commuting entries, is exactly equal to the n x n zero matrix. If B is the identity matrix, then the result is equivalent to the Cayley-Hamilton theorem.
引用
收藏
页码:340 / 342
页数:3
相关论文
共 50 条
  • [1] CAYLEY-HAMILTON THEOREM
    MCCARTHY, CA
    AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (04): : 390 - 391
  • [2] Generalization of Cayley-Hamilton Theorem for Multivariate Rational Matrices
    Xing, Wei
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (03) : 631 - 634
  • [3] A CONVERSE FOR THE CAYLEY-HAMILTON THEOREM
    CHICONE, C
    KALTON, NJ
    PAPICK, IJ
    AMERICAN MATHEMATICAL MONTHLY, 1985, 92 (02): : 134 - 136
  • [4] The quantum Cayley-Hamilton theorem
    Zhang, JJ
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 129 (01) : 101 - 109
  • [5] THE CAYLEY-HAMILTON THEOREM FOR SUPERMATRICES
    URRUTIA, LF
    MORALES, N
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (09): : L441 - L447
  • [6] THE CAYLEY-HAMILTON THEOREM FOR SUPERMATRICES
    URRUTIA, LF
    MORALES, N
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (06): : 1981 - 1997
  • [7] NOTE ON THE CAYLEY-HAMILTON THEOREM
    GREENBERG, MJ
    AMERICAN MATHEMATICAL MONTHLY, 1984, 91 (03): : 193 - 195
  • [8] A generalized Cayley-Hamilton theorem
    Feng, Lianggui
    Tan, Haijun
    Zhao, Kaiming
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (07) : 2440 - 2445
  • [9] A Proof of the Cayley-Hamilton Theorem
    Bernhardt, Chris
    AMERICAN MATHEMATICAL MONTHLY, 2009, 116 (05): : 456 - 457
  • [10] Generalization of Cayley-Hamilton theorem for n-D polynomial matrices
    Kaczorek, T
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (05) : 671 - 674