Convergence Analysis of Zero Attracting Natural Gradient Non-Parametric Maximum Likelihood Algorithm

被引:6
|
作者
Bishnu, Abhijeet [1 ]
Bhatia, Vimal [1 ]
机构
[1] Indian Inst Technol Indore, Signal & Software Grp, Discipline Elect Engn, Indore 453552, Madhya Pradesh, India
关键词
Non-parametric maximum likelihood; non-Gaussian noise; excess mean square error; mean square deviation; zero-attracting; SPARSE CHANNEL ESTIMATION; ADAPTATION; SYSTEMS;
D O I
10.1109/TCSII.2018.2881322
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, a zero-attractor natural gradient non-parametric maximum likelihood (ZA-NG-NPML) algorithm has been proposed for sparse channel estimation in the presence of non-Gaussian noise. The ZA-NG-NPML outperforms existing sparse channel estimation algorithms in the presence of non-Gaussian noise in terms of mean square error (MSE) and convergence. In this brief, a rigorous second order convergence analysis of ZA-NG-NPML algorithm is presented and upper bound on the steady state mean square deviation of active and inactive taps is derived. Further, we also derive the upper bound on the steady state excess MSE for ZA-NG-NPML. Simulation results validate the derived upper bound.
引用
收藏
页码:712 / 716
页数:5
相关论文
共 29 条
  • [1] A Zero Attracting Natural Gradient Non-Parametric Maximum Likelihood for Sparse Channel Estimation
    Bishnu, Abhijeet
    Bhatia, Vimal
    GLOBECOM 2017 - 2017 IEEE GLOBAL COMMUNICATIONS CONFERENCE, 2017,
  • [2] Natural Gradient Non-Parametric Maximum Likelihood Algorithm for Sparse Channel Estimation in Non-Gaussian Noise
    Bishnu, Abhijeet
    Bhatia, Vimal
    2016 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS (SPCOM), 2016,
  • [3] A transitional non-parametric maximum pseudo-likelihood estimator for disease mapping
    Biggeri, A
    Dreassi, E
    Lagazio, C
    Böhning, D
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2003, 41 (3-4) : 617 - 629
  • [4] Parametric and non-parametric gradient matching for network inference: a comparison
    Dony, Leander
    He, Fei
    Stumpf, Michael P. H.
    BMC BIOINFORMATICS, 2019, 20 (1)
  • [5] NON-PARAMETRIC AND SEMIPARAMETRIC MAXIMUM-LIKELIHOOD ESTIMATORS AND THE VON-MISES METHOD .2.
    GILL, RD
    VANDERVAART, AW
    SCANDINAVIAN JOURNAL OF STATISTICS, 1993, 20 (04) : 271 - 288
  • [6] Zero Attracting Maximum Total Correntropy Algorithm for Sparse System Identification
    Li, Lei
    Zhao, Haiquan
    IFAC PAPERSONLINE, 2019, 52 (24): : 103 - 106
  • [7] Diffusion Leaky Zero Attracting Least Mean Square Algorithm and Its Performance Analysis
    Shi, Long
    Zhao, Haiquan
    IEEE ACCESS, 2018, 6 : 56911 - 56923
  • [8] Non-parametric likelihood based channel estimator for Gaussian mixture noise
    Bhatia, Vimal
    Mulgrew, Bernard
    SIGNAL PROCESSING, 2007, 87 (11) : 2569 - 2586
  • [9] Convergence analysis of the zero-attracting variable step-size LMS algorithm for sparse system identification
    Jahromi, Mohammad N. S.
    Salman, Mohammad Shukri
    Hocanin, Aykut
    Kukrer, Osman
    SIGNAL IMAGE AND VIDEO PROCESSING, 2015, 9 (06) : 1353 - 1356
  • [10] Transient analysis of zero attracting NLMS algorithm without Gaussian inputs assumption
    Zhang, Sheng
    Zhang, Jiashu
    SIGNAL PROCESSING, 2014, 97 : 100 - 109