Synthesis and electrochemical properties of LiNi0.5Mn1.5O4 as a 5 V cathode material for lithium ion batteries

被引:10
|
作者
Dong, Yichen [1 ,2 ]
Wang, Zhenbo [1 ]
Qin, Hua [3 ]
Sui, Xulei [1 ]
机构
[1] Harbin Inst Technol, Sch Chem Engn & Technol, Harbin 150001, Peoples R China
[2] Hulunbeier Vocat Tech Coll, Hulunbeier 021000, Peoples R China
[3] Heilongjiang Inst Sci & Technol, Coll Resource & Environm Engn, Harbin 150027, Peoples R China
基金
中国国家自然科学基金;
关键词
SPINEL; CR;
D O I
10.1039/c2ra20980b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
LiNi0.5Mn1.5O4 as a 5 V cathode material for a lithium-ion battery was synthesized by solution evaporation process in this paper. Thermal gravimetric analysis of the precursor compounds was carried out. X-ray diffraction and scanning electron microscope were used for studying the structure and the morphology of the LiNi0.5Mn1.5O4 materials. Cyclic voltammograms and charge-discharge curves were obtained for presenting the electrochemical performances of LiNi0.5Mn1.5O4. Experimental results show that the discharge capacity and capacity retention of the LiNi0.5Mn1.5O4 prepared by solution evaporation process are superior to the LiNi0.5Mn1.5O4 obtained by melting salt method. The effects of different sintering temperatures on the electrochemical properties of the LiNi0.5Mn1.5O4 electrode materials synthesized by a solution evaporation process were also systematically investigated. With the raising of the sintering temperature, the size of the LiNi0.5Mn1.5O4 gradually increases, its crystallinity is enhanced and the surface morphology of grain is gradually neatened. Electrochemical test results show that the LiNi0.5Mn1.5O4 prepared at 800 degrees C has the best cycle reversibility, the highest discharge capacity and the optimal capacity retention.
引用
收藏
页码:11988 / 11992
页数:5
相关论文
共 50 条
  • [21] Multi-shelled porous LiNi0.5Mn1.5O4 microspheres as a 5 V cathode material for lithium-ion batteries
    Yao, Yuanlu
    Liu, Huaicheng
    Li, Guicun
    Peng, Hongrui
    Chen, Kezheng
    MATERIALS CHEMISTRY AND PHYSICS, 2014, 143 (02) : 867 - 872
  • [22] Polyhedral LiNi0.5Mn1.5O4 with excellent electrochemical properties for lithium-ion batteries
    Chen, Zhanjun
    Zhao, Ruirui
    Du, Peng
    Hu, Hang
    Wang, Tao
    Zhu, Licai
    Chen, Hongyu
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (32) : 12835 - 12848
  • [23] Hydrothermal Synthesis of a Nanosized LiNi0.5Mn1.5O4 Cathode Material for High Power Lithium-Ion Batteries
    Huang, Xingkang
    Zhang, Qingshun
    Gan, Jianlong
    Chang, Haitao
    Yang, Yong
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (02) : A139 - A145
  • [24] Synthesis and property of cathode material LiNi0.5Mn1.5O4
    Ji Yong
    Wang Zhi-Xing
    Yin Zhou-Lan
    Guo Hua-Jun
    Peng Wen-Jie
    Li Xin-Hai
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2007, 23 (04) : 597 - 601
  • [25] Effects of lithium excess amount on the microstructure and electrochemical properties of LiNi0.5Mn1.5O4 cathode material
    Jianling Guo
    Xing Qin
    Bo Zong
    Mushang Zhou
    Wei Wu
    Li Wang
    Ionics, 2018, 24 : 2241 - 2250
  • [26] Influence of Ti doping on microstructure and electrochemical performance of LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
    Zong, Bo
    Lang, Yaqiang
    Yan, Shuhao
    Deng, Ziyao
    Gong, Jiajia
    Guo, Jianling
    Wang, Li
    Liang, Guangchuan
    MATERIALS TODAY COMMUNICATIONS, 2020, 24
  • [27] Surface sulfidization of spinel LiNi0.5Mn1.5O4 cathode material for enhanced electrochemical performance in lithium-ion batteries
    Wei, Luya
    Tao, Jianming
    Yang, Yanmin
    Fan, Xinyue
    Ran, Xinxin
    Li, Jiaxin
    Lin, Yingbin
    Huang, Zhigao
    CHEMICAL ENGINEERING JOURNAL, 2020, 384
  • [28] Effects of lithium excess amount on the microstructure and electrochemical properties of LiNi0.5Mn1.5O4 cathode material
    Guo, Jianling
    Qin, Xing
    Zong, Bo
    Zhou, Mushang
    Wu, Wei
    Wang, Li
    IONICS, 2018, 24 (08) : 2241 - 2250
  • [29] Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
    Uxa, Daniel
    Schmidt, Harald
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2022, 236 (6-8): : 979 - 989
  • [30] Synthesis and Electrochemical Characteristics of LiNi0.5Mn1.5O4 Coatings Prepared by Atmospheric Plasma Spray as Cathode Material for Lithium-Ion Batteries
    Liang, Xinghua
    Zhao, Yuchao
    DiHan
    Mao, Jie
    Lan, Lingxiao
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (01): : 717 - 725