Skin Lesion Segmentation via Deep RefineNet

被引:8
|
作者
He, Xinzi [1 ]
Yu, Zhen [1 ]
Wang, Tianfu [1 ]
Lei, Baiying [1 ]
机构
[1] Shenzhen Univ, Natl Reg Key Technol Engn Lab Med Ultrasound, Guangdong Key Lab Biomed Measurements & Ultrasoun, Sch Biomed Engn,Hlth Sci Ctr, Shenzhen, Peoples R China
来源
DEEP LEARNING IN MEDICAL IMAGE ANALYSIS AND MULTIMODAL LEARNING FOR CLINICAL DECISION SUPPORT | 2017年 / 10553卷
关键词
Dermoscopy image; Skin lesion segmentation; Deep residual network; Conditional random field; Deep RefineNet;
D O I
10.1007/978-3-319-67558-9_35
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Dermoscopy imaging has been a routine examination approach for skin lesion diagnosis. Accurate segmentation is the first step for automatic dermoscopy image assessment. The main challenges for skin lesion segmentation are numerous variations in viewpoint and scale of skin lesion region. To handle these challenges, we propose a novel skin lesion segmentation framework via a very deep residual neural network based on dermoscopic images. The deep residual neural network and generic multi-path Deep RefineNet are combined to improve the segmentation performance. The deep representation of all available layers is aggregated to form the global feature maps using skip connection. Also, the chained residual pooling is leveraged to capture diverse appearance features based on the context. Finally, we apply the conditional random field (CRF) to smooth segmentation maps. Our proposed method shows superiority over state-of-the-art approaches based on the public skin lesion challenge dataset.
引用
收藏
页码:303 / 311
页数:9
相关论文
共 50 条
  • [41] Deep Active Lesion Segmentation
    Hatamizadeh, Ali
    Hoogi, Assaf
    Sengupta, Debleena
    Lu, Wuyue
    Wilcox, Brian
    Rubin, Daniel
    Terzopoulos, Demetri
    MACHINE LEARNING IN MEDICAL IMAGING (MLMI 2019), 2019, 11861 : 98 - 105
  • [42] Deep learning based an automated skin lesion segmentation and intelligent classification model
    Yacin Sikkandar, Mohamed
    Alrasheadi, Bader Awadh
    Prakash, N. B.
    Hemalakshmi, G. R.
    Mohanarathinam, A.
    Shankar, K.
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 12 (03) : 3245 - 3255
  • [43] Automated approach for skin lesion segmentation utilizing a hybrid deep learning algorithm
    Manjunath, R., V
    Gowda, Yashaswini N.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (15) : 46017 - 46035
  • [44] Skin lesion segmentation using deep learning for images acquired from smartphones
    De Angelo, Gabriel G.
    Pacheco, Andre G. C.
    Krohling, Renato A.
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [45] Skin lesion segmentation using deep learning algorithm with ant colony optimization
    Sarwar, Nadeem
    Irshad, Asma
    Naith, Qamar H.
    D.Alsufiani, Kholod
    Almalki, Faris A.
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [46] Medical Image Segmentation for Skin Lesion Detection via Topological Data Analysis
    Jazayeri, Niloofar
    Jazayeri, Farnaz
    Sajedi, Hedieh
    PROCEEDINGS OF THE 2022 16TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INFORMATION MANAGEMENT AND COMMUNICATION (IMCOM 2022), 2022,
  • [47] Semi-Supervised Skin Lesion Segmentation via Iterative Mask Optimization
    Du, Fuhe
    Peng, Bo
    Al-Huda, Zaid
    Yao, Jing
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2024, 24 (02)
  • [48] Semi-Automatic Skin Lesion Segmentation via Fully Convolutional Networks
    Bi, Lei
    Kim, Jinman
    Ahn, Euijoon
    Feng, Dagan
    Fulham, Michael
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 561 - 564
  • [49] Skin Lesion Segmentation in Dermoscopy Imagery
    Garg, Shelly
    Jindal, Balkrishan
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2022, 19 (01) : 29 - 37
  • [50] Border preserving skin lesion segmentation
    Kamali, Mostafa
    Samei, Golnoosh
    MEDICAL IMAGING 2008: COMPUTER-AIDED DIAGNOSIS, PTS 1 AND 2, 2008, 6915