Ag@Cu2O Core-Shell Nanoparticles as Visible-Light Plasmonic Photocatalysts

被引:482
作者
Li, Jiangtian [1 ]
Cushing, Scott K. [2 ]
Bright, Joeseph [1 ]
Meng, Fanke [1 ]
Senty, Tess R. [2 ]
Zheng, Peng [1 ]
Bristow, Alan D. [2 ]
Wu, Nianqiang [1 ]
机构
[1] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA
[2] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA
基金
美国国家科学基金会;
关键词
plasmon; photocatalyst; resonant energy transfer; electron transfer; solar energy; CHARGE SEPARATION; HYDROGEN-PRODUCTION; PARTICLE-SIZE; TIO2; SEMICONDUCTOR; SURFACE; METAL; ORIGIN; SILVER;
D O I
10.1021/cs300672f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Compared to pristine Cu2O nanoparticles (NPs), Ag@Cu2O core-shell NPs exhibit photocatalytic activity over an extended wavelength range because of the presence of localized surface plasmon resonance (LSPR) in the Ag core. The photocatalysis action spectra and transient absorption measurements show that the plasmonic energy is transferred from the metal to the semiconductor via plasmon-induced resonant energy transfer (PIRET) and direct electron transfer (DET) simultaneously, generating electron hole pairs in the semiconductor. The LSPR band of Ag@Cu2O core-shell NPs shows a red-shift with an increase in the Cu2O shell thickness, extending the light absorption of Ag@Cu2O heterostructures to longer wavelengths. As a result, the photocatalytic activity of the Ag@Cu2O core-shell NPs is varied by modulation of the shell thickness on the nanometer scale. This work has demonstrated that the Ag@Cu2O core-shell heterostructure is an efficient visible-light plasmonic photocatalyst, which allows for tunable light absorption over the entire visible-light region by tailoring the shell thickness.
引用
收藏
页码:47 / 51
页数:5
相关论文
共 35 条
[1]   Following Charge Separation on the Nanoscale in Cu2O-Au Nanoframe Hollow Nanoparticles [J].
A. Mahmoud, Mahmoud ;
Qian, Wei ;
El-Sayed, Mostafa A. .
NANO LETTERS, 2011, 11 (08) :3285-3289
[2]   A plasmonic photocatalyst consisting of sliver nanoparticles embedded in titanium dioxide [J].
Awazu, Koichi ;
Fujimaki, Makoto ;
Rockstuhl, Carsten ;
Tominaga, Junji ;
Murakami, Hirotaka ;
Ohki, Yoshimichi ;
Yoshida, Naoya ;
Watanabe, Toshiya .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (05) :1676-1680
[3]   Enhancing Photochemical Activity of Semiconductor Nanoparticles with Optically Active Ag Nanostructures: Photochemistry Mediated by Ag Surface Plasmons [J].
Christopher, Phillip ;
Ingram, David B. ;
Linic, Suljo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (19) :9173-9177
[4]   Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor [J].
Cushing, Scott K. ;
Li, Jiangtian ;
Meng, Fanke ;
Senty, Tess R. ;
Suri, Savan ;
Zhi, Mingjia ;
Li, Ming ;
Bristow, Alan D. ;
Wu, Nianqiang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (36) :15033-15041
[5]   Origin of localized surface plasmon resonances in thin silver film over nanosphere patterns [J].
Cushing, Scott K. ;
Hornak, Lawrence A. ;
Lankford, Jessica ;
Liu, Yuxin ;
Wu, Nianqiang .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 103 (04) :955-958
[6]   Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles [J].
Furube, Akihiro ;
Du, Luchao ;
Hara, Kohjiro ;
Katoh, Ryuzi ;
Tachiya, Masanori .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (48) :14852-+
[7]   Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation [J].
Hirakawa, T ;
Kamat, PV .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (11) :3928-3934
[8]   Plasmon-Induced Photodegradation of Toxic Pollutants with Ag-Agl/Al2O3 under Visible-Light Irradiation [J].
Hu, Chun ;
Peng, Tianwei ;
Hu, Xuexiang ;
Nie, Yulun ;
Zhou, Xuefeng ;
Qu, Jiuhui ;
He, Hong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (02) :857-862
[9]   Efficient Visible-Light-Induced Photocatalytic Activity on Gold-Nanoparticle-Supported Layered Titanate [J].
Ide, Yusuke ;
Matsuoka, Mizuki ;
Ogawa, Makoto .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (47) :16762-16764
[10]   Water Splitting on Composite Plasmonic-Metal/Semiconductor Photoelectrodes: Evidence for Selective Plasmon-Induced Formation of Charge Carriers near the Semiconductor Surface [J].
Ingram, David B. ;
Linic, Suljo .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (14) :5202-5205