Decomposition of Potassium Hydrogen Carbonate: Thermochemistry, Kinetics, and Textural Changes in Solids

被引:25
|
作者
Hartman, Miloslav [1 ,2 ]
Svoboda, Karel [1 ,3 ]
Cech, Bohumir [2 ]
Pohorely, Michael [1 ,4 ]
Syc, Michal [1 ]
机构
[1] AS CR, Inst Chem Proc Fundamentals, Rozvojova 135, Prague 16502 6, Czech Republic
[2] Tech Univ Ostrava, ENET Ctr, 17,Listopadu 15, Ostrava 70833, Czech Republic
[3] Univ Jan Evangelista Purkyne, Fac Environm, Kralova Vysina 7, Usti Nad Labem 40096, Czech Republic
[4] Univ Chem & Technol Prague, Dept Power Engn, Tech 5, Prague 16628 6, Czech Republic
关键词
THERMAL-DECOMPOSITION; SODIUM-CARBONATE; SULFUR-DIOXIDE; FLUIDIZED-BED; DISSOCIATION PRESSURES; ALKALI BICARBONATES; SURFACE-AREA; GAS; GASIFICATION; PARAMETERS;
D O I
10.1021/acs.iecr.8b06151
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
To determine unbiased rates of the decomposition of KHCO3, slowly increasing- and constant-temperature TGA methods were employed with small, finely ground samples. Such reaction provides a novel, porous, and highly reactive sorbent for noxious and/or malodorous gases. The bicarbonate commences decomposing at 364 K, and the maximum rate of reaction, attained at 421.9 K, amounts to 5.73 x 10(-4) 1/s. Taking advantage of the Schlomilch function, an Arrhenius-type relationship is developed by an integral method: the activation energy is as large as 141.3 kJ/mol and the order of reaction amounts to 1.145. While the pore volume made by calcination (0.2309 cm(3)/g) is not affected by temperature at 403-503 K, the mean pore diameter and the grain size augment with increasing temperature. The diagram presented makes it possible to conveniently predict the conditions to attain near-complete conversion of the bicarbonate and minimize undesirable sintering of the nascent carbonate.
引用
收藏
页码:2868 / 2881
页数:14
相关论文
共 50 条
  • [1] Thermal Decomposition of Sodium Hydrogen Carbonate and Textural Features of Its Calcines
    Hartman, Miloslav
    Svoboda, Karel
    Pohorely, Michael
    Syc, Michal
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (31) : 10619 - 10626
  • [2] Decomposition kinetics study of AlOOH coated calcium carbonate
    Jin, Dalai
    Yu, Xiaojing
    Yue, Linhai
    Wang, Lina
    MATERIALS CHEMISTRY AND PHYSICS, 2009, 115 (01) : 418 - 422
  • [3] Effect of pre-treatments on isothermal decomposition kinetics of potassium metaperiodate
    Muraleedharan, K.
    Mujeeb, V. M. Abdul
    Aneesh, M. H.
    Gangadevi, T.
    Kannan, M. P.
    THERMOCHIMICA ACTA, 2010, 510 (1-2) : 160 - 167
  • [4] Effect of atmosphericwater vapor on the kinetics of thermal decomposition of copper(II) carbonate hydroxide
    Koga, N.
    Tatsuoka, T.
    Tanaka, Y.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2009, 95 (02) : 483 - 487
  • [5] Thermal Decomposition Kinetics of Poly(propylene carbonate maleate)
    Wu Wei-Kang
    Wang Jia-Li
    Liu Su-Qin
    Huang Ke-Long
    Liu Yan-Fei
    ACTA PHYSICO-CHIMICA SINICA, 2010, 26 (11) : 2915 - 2919
  • [6] Kinetics of the thermal decomposition of sodium hydrogen carbonate evaluated by controlled rate evolved gas analysis coupled with thermogravimetry
    Yamada, S
    Koga, N
    THERMOCHIMICA ACTA, 2005, 431 (1-2) : 38 - 43
  • [7] Kinetics of Thermal Decomposition of Potassium Sodium Tartrate Tetrahydrate
    Wang, Xinfang
    ASIAN JOURNAL OF CHEMISTRY, 2013, 25 (04) : 2337 - 2338
  • [8] Effects of dopants on the isothermal decomposition kinetics of potassium metaperiodate
    Muraleedharan, Karuvanthodi
    Kannan, Malayan Parambil
    Devi, Tharakkal Ganga
    JOURNAL OF THE SERBIAN CHEMICAL SOCIETY, 2011, 76 (08) : 1129 - 1138
  • [9] Kinetics of Methane Decomposition in the Catalytic Liquid Metal Reactor for Hydrogen Production
    Liao Jiashu
    Liu Jianxing
    Wang Sishu
    Chen Bo
    Chen Jianjun
    Wei Jianjun
    Ye Zongbiao
    Gou Fujun
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2024, 45 (02):
  • [10] KINETICS OF NON-ISOTHERMAL DECOMPOSITION OF BASIC COBALT CARBONATE
    Liu, Bingguo
    Peng, Jinhui
    Zhang, Libo
    Li, Wei
    Zhou, Liexing
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2010, 88 (05): : 777 - 782