Visual and colorimetric determination of H2O2 and glucose based on citrate-promoted H2O2 sculpturing of silver nanoparticles

被引:29
|
作者
Zong, Chenghua [1 ]
Li, Bo [1 ]
Wang, Jing [1 ]
Liu, Xiaojun [1 ]
Zhao, Wenfeng [1 ]
Zhang, Qingquan [1 ]
Nie, Xinming [2 ]
Yu, Yang [1 ]
机构
[1] Jiangsu Normal Univ, Sch Chem & Mat Sci, Jiangsu Key Lab Green Synth Funct Mat, Xuzhou 221116, Jiangsu, Peoples R China
[2] Jiangsu Normal Univ, Sch Phys & Elect Engn, Xuzhou 221116, Peoples R China
关键词
Surface plasmon resonance; Absorption; Nanomaterials; Colorimetry; Shape transformation; Hydrogen peroxide; Colorimetric and Ag nanoparticles; PEROXIDASE-LIKE ACTIVITY; HYDROGEN-PEROXIDE; SHAPE TRANSFORMATION; GOLD; AGGREGATION; FLUORESCENCE; NANOPRISMS; OXIDATION; MIMETICS; SERUM;
D O I
10.1007/s00604-018-2737-2
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Isotropic silver nanoparticles (iAg NPs) can be easily prepared at low costs, have a low electrochemical potential and high extinction coefficient. An effective colorimetric assay for H2O2 is reported here based on the finding that H2O2 can induce the shape transformation of citrate-capped iAg NPs with the help of citrate. The substantial shape variation affords an apparent surface plasmon resonance (SPR) shift, accompanied by a vivid color change from light yellow to mauve. The color change can be observed visually if the concentration of H2O2 is 2 mu M or higher. A good linear relationship was obtained over the concentration range of 0.2-32 mu Mwith a limit of detection of 90 nM. By making use of glucose oxidase, the method is further extended to glucose detection. Glucose at a concentration as low as 10 mu M can be well determined with bare eyes. Benefitting from the high selectivity, the detection of glucose in human serum is realized, and the results are in good agreement with those provided by a clinical analyzer.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Photolysis of H2O-H2O2 mixtures: The destruction of H2O2
    Loeffler, M. J.
    Fama, M.
    Baragiola, R. A.
    Carlson, R. W.
    ICARUS, 2013, 226 (01) : 945 - 950
  • [42] Catalytic properties of Cr-containing heteropolytungstates in H2O2 participated reactions: H2O2 decomposition and oxidation of unsaturated hydrocarbons with H2O2
    Kuznetsova, NI
    Kuznetsova, LI
    Likholobov, VA
    JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 1996, 108 (03) : 135 - 143
  • [43] Synthesis of Au-Cu Alloy Nanoparticles as Peroxidase Mimetics for H2O2 and Glucose Colorimetric Detection
    Liu, Cun
    Im, Sang Hyuk
    Yu, Taekyung
    CATALYSTS, 2021, 11 (03) : 1 - 12
  • [44] Nonenzymatic H2O2 sensing based on silver nanoparticles capped polyterthiophene/MWCNT nanocomposite
    Abdelwahab, Adel A.
    Shim, Yoon-Bo
    SENSORS AND ACTUATORS B-CHEMICAL, 2014, 201 : 51 - 58
  • [45] BLOOD-GLUCOSE DETERMINATION BY MEASUREMENT OF H2O2 WITH AN ENZYME ELECTRODE
    SCHELLER, F
    JANCHEN, M
    RISTAU, O
    ENDOKRINOLOGIE, 1978, 71 (03): : 369 - 369
  • [46] A colorimetric assay for H2O2 and glucose based on the morphology transformation of Au/Ag nanocages to nanoboxes
    Aliakbarpour, Saeid
    Amjadi, Mohammad
    Hallaj, Tooba
    FOOD CHEMISTRY, 2024, 432
  • [47] Oxidation reactivities of dibenzothiophenes in polyoxometalate/H2O2 and formic acid/H2O2 systems
    Te, M
    Fairbridge, C
    Ring, Z
    APPLIED CATALYSIS A-GENERAL, 2001, 219 (1-2) : 267 - 280
  • [48] Heterotopic formaldehyde biodegradation through UV/H2O2 system with biosynthetic H2O2
    Zhao, Qian
    An, Jingkun
    Wang, Shu
    Wang, Cong
    Liu, Jia
    Li, Nan
    WATER ENVIRONMENT RESEARCH, 2019, 91 (07) : 598 - 605
  • [49] H2O2 bleaching of mechanical pulps.: Part IV:: H2O2 consumption
    Xu, EC
    JOURNAL OF PULP AND PAPER SCIENCE, 2002, 28 (11): : 379 - 383
  • [50] Responsive mechanism of a newly synthesized fluorescent probe for sensing H2O2, NO and H2O2/NO
    Zhang, Yu-Jin
    Wang, Xin
    Zhou, Yong
    Zhao, Ke
    Wang, Chuan-Kui
    CHEMICAL PHYSICS LETTERS, 2016, 662 : 107 - 113