Visual and colorimetric determination of H2O2 and glucose based on citrate-promoted H2O2 sculpturing of silver nanoparticles

被引:29
|
作者
Zong, Chenghua [1 ]
Li, Bo [1 ]
Wang, Jing [1 ]
Liu, Xiaojun [1 ]
Zhao, Wenfeng [1 ]
Zhang, Qingquan [1 ]
Nie, Xinming [2 ]
Yu, Yang [1 ]
机构
[1] Jiangsu Normal Univ, Sch Chem & Mat Sci, Jiangsu Key Lab Green Synth Funct Mat, Xuzhou 221116, Jiangsu, Peoples R China
[2] Jiangsu Normal Univ, Sch Phys & Elect Engn, Xuzhou 221116, Peoples R China
关键词
Surface plasmon resonance; Absorption; Nanomaterials; Colorimetry; Shape transformation; Hydrogen peroxide; Colorimetric and Ag nanoparticles; PEROXIDASE-LIKE ACTIVITY; HYDROGEN-PEROXIDE; SHAPE TRANSFORMATION; GOLD; AGGREGATION; FLUORESCENCE; NANOPRISMS; OXIDATION; MIMETICS; SERUM;
D O I
10.1007/s00604-018-2737-2
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Isotropic silver nanoparticles (iAg NPs) can be easily prepared at low costs, have a low electrochemical potential and high extinction coefficient. An effective colorimetric assay for H2O2 is reported here based on the finding that H2O2 can induce the shape transformation of citrate-capped iAg NPs with the help of citrate. The substantial shape variation affords an apparent surface plasmon resonance (SPR) shift, accompanied by a vivid color change from light yellow to mauve. The color change can be observed visually if the concentration of H2O2 is 2 mu M or higher. A good linear relationship was obtained over the concentration range of 0.2-32 mu Mwith a limit of detection of 90 nM. By making use of glucose oxidase, the method is further extended to glucose detection. Glucose at a concentration as low as 10 mu M can be well determined with bare eyes. Benefitting from the high selectivity, the detection of glucose in human serum is realized, and the results are in good agreement with those provided by a clinical analyzer.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Comparison of H2O2/UV, H2O2/O3 and H2O2/Fe2+ processes for the decolorisation of vinylsulphone reactive dyes
    Kurbus, T
    Le Marechal, AM
    Voncina, DB
    DYES AND PIGMENTS, 2003, 58 (03) : 245 - 252
  • [22] Degradation of melatonin by UV, UV/H2O2, Fe2+/H2O2 and UV/Fe2+/H2O2 processes
    Xu, Xiang-Rong
    Li, Xiao-Yan
    Li, Xiang-Zhong
    Li, Hua-Bin
    SEPARATION AND PURIFICATION TECHNOLOGY, 2009, 68 (02) : 261 - 266
  • [23] Spotting H2O2
    Halford, Bethany
    CHEMICAL & ENGINEERING NEWS, 2008, 86 (11) : 10 - 10
  • [24] HIGHLIGHTING H2O2
    Pan, Zhenhua
    CHEMISTRY & INDUSTRY, 2022, 86 (09) : 22 - 25
  • [25] PEEKABOO, H2O2
    Drahl, Carmen
    CHEMICAL & ENGINEERING NEWS, 2011, 89 (02) : 32 - 33
  • [26] H2O2 and the law
    H. Beckett
    British Dental Journal, 2010, 208 : 273 - 274
  • [27] H2O2 AND THE LAW
    Beckett, H.
    BRITISH DENTAL JOURNAL, 2010, 208 (07) : 273 - 274
  • [28] On the decomposition of H2O2
    Davey, WP
    SCIENCE, 1925, 61 : 388 - 389
  • [29] H2O2: A Chemoattractant?
    Enyedi, Balazs
    Niethammer, Philipp
    HYDROGEN PEROXIDE AND CELL SIGNALING, PT C, 2013, 528 : 237 - 255
  • [30] Influence of VO2 Nanoparticle Morphology on the Colorimetric Assay of H2O2 and Glucose
    Tian, Rui
    Sun, Jiaheng
    Qi, Yanfei
    Zhang, Boyu
    Guo, Shuanli
    Zhao, Mingming
    NANOMATERIALS, 2017, 7 (11):