Costunolide Plays an Anti-Neuroinflammation Role in Lipopolysaccharide-Induced BV2 Microglial Activation by Targeting Cyclin-Dependent Kinase 2

被引:16
|
作者
Liu, Yan-Chen [1 ,2 ,3 ,4 ]
Feng, Na [2 ]
Li, Wei-Wei [3 ]
Tu, Peng-Fei [2 ]
Chen, Jian-Ping [5 ]
Han, Jing-Yan [1 ,4 ]
Zeng, Ke-Wu [2 ,3 ]
机构
[1] Peking Univ, Sch Basic Med Sci, Dept Integrat Chinese & Western Med, Beijing 100191, Peoples R China
[2] Peking Univ, Sch Pharmaceut Sci, State Key Lab Nat & Biomimet Drugs, Beijing 100191, Peoples R China
[3] Peking Univ, Hosp 1, Integrated Lab Chinese & Western Med, Beijing 100034, Peoples R China
[4] Peking Univ, Hlth Sci Ctr, Tasly Microcirculat Res Ctr, Beijing 100191, Peoples R China
[5] Univ Hong Kong, Sch Chinese Med, Hong Kong 999077, Peoples R China
来源
MOLECULES | 2020年 / 25卷 / 12期
关键词
costunolide; natural product; anti-neuroinflammation; target identification; CDK2; NF-KAPPA-B; SESQUITERPENE LACTONES; NEURODEGENERATIVE DISEASES; CELL-CYCLE; INFLAMMATION; DEHYDROCOSTUSLACTONE; MECHANISMS; DOCKING;
D O I
10.3390/molecules25122840
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hyperactivation of microglia in the brain is closely related to neuroinflammation and leads to neuronal dysfunction. Costunolide (CTL) is a natural sesquiterpene lactone with wide pharmacological activities including anti-inflammation and antioxidation. In this study, we found that CTL significantly inhibited the production of inflammatory mediators including nitric oxide, IL-6, TNF-alpha, and PGE2 in lipopolysaccharide (LPS)-stimulated BV2 microglia. Moreover, CTL effectively attenuated IKK beta/NF-kappa B signaling pathway activation. To identify direct cellular target of CTL, we performed high-throughput reverse virtual screening assay using scPDB protein structure library, and found cyclin-dependent kinase 2 (CDK2) was the most specific binding protein for CTL. We further confirmed the binding ability of CTL with CDK2 using cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS) assays. Surface plasmon resonance analysis also supported that CTL specifically bound to CDK2 with a dissociation constant at micromole level. Furthermore, knocking down CDK2 obviously reversed the anti-inflammation effect of CTL via AKT/IKK beta/NF-kappa B signaling pathway on BV-2 cells. Collectively, these results indicate that CTL inhibits microglia-mediated neuroinflammation through directly targeting CDK2, and provide insights into the role of CDK2 as a promising anti-neuroinflammation therapeutic target.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Protective role of fentanyl in lipopolysaccharide-induced neuroinflammation in BV-2 cells
    Wang, Jian
    Jin, Yingjie
    Li, Jianchun
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2018, 16 (04) : 3740 - 3744
  • [22] δ-Opioid receptor activation ameliorates lipopolysaccharide-induced inflammation and apoptosis by inhibiting the MAPK/caspase-3 pathway in BV2 microglial cells
    Cheng, Min
    Geng, Yue
    Chen, Yeting
    Zhang, Yongjie
    Guo, Runjie
    Xu, Hong
    Liang, Jianfeng
    Xie, Jiajun
    Zhang, Zean
    Tian, Xuesong
    EXPERIMENTAL BRAIN RESEARCH, 2021, 239 (02) : 401 - 412
  • [23] Okra (Abelmoschus esculentus Linn) inhibits lipopolysaccharide-induced inflammatory mediators in BV2 microglial cells
    Mairuae, Nootchanat
    Cheepsunthorn, Poonlarp
    Cheepsunthorn, Chalisa Louicharoen
    Tongjaroenbuangam, Walaiporn
    TROPICAL JOURNAL OF PHARMACEUTICAL RESEARCH, 2017, 16 (06) : 1285 - 1292
  • [24] Mucuna pruriens (L.) DC. seed extract inhibits lipopolysaccharide-induced inflammatory responses in BV2 microglial cells
    Rachsee, Aungkana
    Chiranthanut, Natthakarn
    Kunnaja, Phraepakaporn
    Sireeratawong, Seewaboon
    Khonsung, Parirat
    Chansakaow, Sunee
    Panthong, Ampai
    JOURNAL OF ETHNOPHARMACOLOGY, 2021, 267
  • [25] Anti-neuroinflammatory activities of indole alkaloids from kanjang (Korean fermented soy source) in lipopolysaccharide-induced BV2 microglial cells
    Kim, Dong-Cheol
    Tran Hong Quang
    Yoon, Chi-Su
    Nguyen Thi Thanh Ngan
    Lim, Seong-Il
    Lee, So-Young
    Kim, Youn-Chul
    Oh, Hyuncheol
    FOOD CHEMISTRY, 2016, 213 : 69 - 75
  • [26] Zerumbone attenuates lipopolysaccharide-induced activation of BV-2 microglial cells via NF-κB signaling
    Gu, Min Ji
    Lee, Pyeongjae
    Ha, Sang Keun
    Hur, Jinyoung
    APPLIED BIOLOGICAL CHEMISTRY, 2020, 63 (01)
  • [27] Terrein suppressed lipopolysaccharide-induced neuroinflammation through inhibition of NF-κB pathway by activating Nrf2/HO-1 signaling in BV2 and primary microglial cells
    Kim, Kwan-Woo
    Kim, Hye Jin
    Sohn, Jae Hak
    Yim, Joung Han
    Kim, Youn-Chul
    Oh, Hyuncheol
    JOURNAL OF PHARMACOLOGICAL SCIENCES, 2020, 143 (03) : 209 - 218
  • [28] Oleamide suppresses lipopolysaccharide-induced expression of iNOS and COX-2 through inhibition of NF-κB activation in BV2 murine microglial cells
    Oh, Young Taek
    Lee, Jung Yeon
    Lee, Jinhwa
    Lee, Ju Hie
    Kim, Ja-Eun
    Ha, Joohun
    Kang, Insug
    NEUROSCIENCE LETTERS, 2010, 474 (03) : 148 - 153
  • [29] δ-Opioid receptor activation ameliorates lipopolysaccharide-induced inflammation and apoptosis by inhibiting the MAPK/caspase-3 pathway in BV2 microglial cells
    Min Cheng
    Yue Geng
    Yeting Chen
    Yongjie Zhang
    Runjie Guo
    Hong Xu
    Jianfeng Liang
    Jiajun Xie
    Zean Zhang
    Xuesong Tian
    Experimental Brain Research, 2021, 239 : 401 - 412
  • [30] Inhibitory effect of Agrimoniae Herba on lipopolysaccharide-induced nitric oxide and proinflammatory cytokine production in BV2 microglial cells
    Bae, Hyunsu
    Kim, Hye-Jeoung
    Shin, Minkyu
    Lee, Hyejung
    Yin, Chang Shik
    Ra, Jehyeon
    Kim, Jinju
    NEUROLOGICAL RESEARCH, 2010, 32 : S53 - S57