Machine Learning-Based Method for Prediction of Virtual Network Function Resource Demands

被引:7
|
作者
Kim, Hee-Gon [1 ]
Lee, Do-Young [1 ]
Jeong, Se-Yeon [1 ]
Choi, Heeyoul [2 ]
Yoo, Jae-Hyung [3 ]
Hong, James Won-Ki [1 ]
机构
[1] Pohang Univ Sci & Technol, Comp Sci & Engn, Pohang, South Korea
[2] Handong Global Univ, Pohang, South Korea
[3] Pohang Univ Sci & Technol, Grad Sch Informat Technol, Pohang, South Korea
来源
PROCEEDINGS OF THE 2019 IEEE CONFERENCE ON NETWORK SOFTWARIZATION (NETSOFT 2019) | 2019年
关键词
VNF; SFC; Machine Learning; Resource Demand Prediction;
D O I
10.1109/netsoft.2019.8806687
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Software-Defined Networking (SDN) and Network Function Virtualization (NFV) are paradigms that help administrators to manage dynamic networks. While SDN allows centralized network control, NFV provides flexible and scalable Virtual Network Functions (VNFs). These paradigms are also enablers for concepts such as Service Function Chaining (SFC) where chains are composed of several VNFs to provide a specific service. However, in order to maximize the benefits from the above-mentioned flexibility, new research questions need to be addressed, e.g., regarding effective management processes for dynamic networks. We proposed a novel learning model based on the flexibility of softwarization and abundant volume of monitoring data in NFV environments to predict VNF resource demands using SFC data. Our model is based on Context and Aspect Embedded Attentive Target Dependent Long Short Term Memory (CAT-LSTM) that consists of Target-Dependent LSTM (TD-LSTM), context embedding, aspect embedding, and attention. We developed this model to obtain high accuracy for the prediction of VNF resources such as the CPU. Our model uses two labeling systems: the qualitative resource state and the quantitative resource usage, both of which are used to evaluate its performance. This assists the administrator in understanding the network conditions, improves prediction performance, and provides practically useful information. Our learning model for predicting VNF resource demands can be utilized to solve essential SFC problems such as auto -scaling and optimal placement, which in turn prevent service interruption and provide high reliability.
引用
收藏
页码:405 / 413
页数:9
相关论文
共 50 条
  • [21] A Machine Learning-Based Observational Constraint Correction Method for Seasonal Precipitation Prediction
    Zhang, Bofei
    Yu, Haipeng
    Hu, Zeyong
    Yue, Ping
    Tang, Zunye
    Luo, Hongyu
    Wang, Guantian
    Cheng, Shanling
    ADVANCES IN ATMOSPHERIC SCIENCES, 2025, 42 (01) : 36 - 52
  • [22] Review of machine learning-based Mineral Resource estimation
    Mahoob, M. A.
    Celik, T.
    Genc, B.
    JOURNAL OF THE SOUTHERN AFRICAN INSTITUTE OF MINING AND METALLURGY, 2022, 122 (11) : 655 - 664
  • [23] A Machine Learning-Based Evaluation Method for Machine Translation
    Kotani, Katsunori
    Yoshimi, Takehiko
    ARTIFICIAL INTELLIGENCE: THEORIES, MODELS AND APPLICATIONS, PROCEEDINGS, 2010, 6040 : 351 - +
  • [24] Machine Learning and Deep Learning-Based Students’ Grade Prediction
    Korchi A.
    Messaoudi F.
    Abatal A.
    Manzali Y.
    Operations Research Forum, 4 (4)
  • [25] Machine learning seismic reservoir prediction method based on virtual sample generation
    Sang, Kai-Heng
    Yin, Xing-Yao
    Zhang, Fan-Chang
    PETROLEUM SCIENCE, 2021, 18 (06) : 1662 - 1674
  • [26] Machine Learning-based Prediction of VNF Deployment Decisions in Dynamic Networks
    Lange, Stanislav
    Kim, Hee-Gon
    Jeong, Se-Yeon
    Choi, Heeyoul
    Yoo, Jae-Hyung
    Hong, James Won-Ki
    2019 20TH ASIA-PACIFIC NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (APNOMS), 2019,
  • [27] Machine Learning-Based Approach for Hardware Faults Prediction
    Khalil, Kasem
    Eldash, Omar
    Kumar, Ashok
    Bayoumi, Magdy
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (11) : 3880 - 3892
  • [28] Interpretability of machine learning-based prediction models in healthcare
    Stiglic, Gregor
    Kocbek, Primoz
    Fijacko, Nino
    Zitnik, Marinka
    Verbert, Katrien
    Cilar, Leona
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (05)
  • [29] Machine Learning-Based Prediction of the Martensite Start Temperature
    Wentzien, Marcel
    Koch, Marcel
    Friedrich, Thomas
    Ingber, Jerome
    Kempka, Henning
    Schmalzried, Dirk
    Kunert, Maik
    STEEL RESEARCH INTERNATIONAL, 2024, 95 (10)
  • [30] Machine learning-based icing prediction on wind turbines
    Kreutz, Markus
    Ait-Alla, Abderrahim
    Varasteh, Kamaloddin
    Oelker, Stephan
    Greulich, Andreas
    Freitag, Michael
    Thoben, Klaus-Dieter
    52ND CIRP CONFERENCE ON MANUFACTURING SYSTEMS (CMS), 2019, 81 : 423 - 428