共 50 条
Convergence of a finite element method on a Bakhvalov-type mesh for singularly perturbed reaction-diffusion equation
被引:9
|作者:
Zhang, Jin
[1
]
Liu, Xiaowei
[2
]
机构:
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, Sch Math & Stat, Jinan 250353, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Singular perturbation;
Reaction-diffusion equation;
Bakhvalov-type mesh;
Finite element method;
Higher-order;
Uniform convergence;
BOUNDARY-VALUE-PROBLEMS;
SHISHKIN MESH;
D O I:
10.1016/j.amc.2020.125403
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
A finite element method is applied on a Bakhvalov-type mesh to solve a singularly perturbed reaction-diffusion problem whose solution exhibits boundary layers. A uniform convergence order of O(N-(k+1) + epsilon(1/2N-k)) is proved, where k is the order of piecewise polynomials in the finite element method, eis the diffusion parameter and N is the number of partitions in each direction. Numerical experiments support this theoretical result. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:9
相关论文