Integrability and nonintegrability of sub-Riemannian geodesic flows on Carnot groups

被引:14
作者
Bizyaev, Ivan A. [1 ]
Borisov, Alexey V. [1 ,2 ]
Kilin, Alexander A. [1 ]
Mamaev, Ivan S. [3 ]
机构
[1] Udmurt State Univ, Ul Univ Skaya 1, Izhevsk 426034, Russia
[2] Natl Res Nucl Univ MEPhI, Kashirskoe Sh 31, Moscow 115409, Russia
[3] Izhevsk State Tech Univ, Ul Studencheskaya 7, Izhevsk 426069, Russia
基金
俄罗斯科学基金会;
关键词
sub-Riemannian geometry; Carnot group; Poincare map; first integrals; MILLS CLASSICAL MECHANICS; HAMILTONIAN-SYSTEMS; POTENTIALS; DISTRIBUTIONS;
D O I
10.1134/S1560354716060125
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with two systems from sub-Riemannian geometry. One of them is defined by a Carnot group with three generatrices and growth vector (3, 6, 14), the other is defined by two generatrices and growth vector (2, 3, 5, 8). Using a Poincar, map, the nonintegrability of the above systems in the general case is shown. In addition, particular cases are presented in which there exist additional first integrals.
引用
收藏
页码:759 / 774
页数:16
相关论文
共 50 条
  • [31] Homogenization for sub-riemannian Lagrangians
    Morgado, Hector Sanchez
    NONLINEARITY, 2023, 36 (06) : 3043 - 3067
  • [32] Symmetries of sub-Riemannian surfaces
    Arteaga B, Jose Ricardo
    Malakhaltsev, Mikhail Armenovich
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (01) : 290 - 308
  • [33] Sub-Riemannian Cartan Sphere
    Sachkov, Yu. L.
    DOKLADY MATHEMATICS, 2022, 106 (03) : 462 - 466
  • [34] Sub-Riemannian Engel Sphere
    Yu. L. Sachkov
    A. Yu. Popov
    Doklady Mathematics, 2021, 104 : 301 - 305
  • [35] Sub-Riemannian Engel Sphere
    Sachkov, Yu L.
    Popov, A. Yu
    DOKLADY MATHEMATICS, 2021, 104 (02) : 301 - 305
  • [36] Classification of sub-Riemannian manifolds
    S. K. Vodop’yanov
    I. G. Markina
    Siberian Mathematical Journal, 1998, 39 : 1096 - 1111
  • [37] Sub-Riemannian Cartan Sphere
    Yu. L. Sachkov
    Doklady Mathematics, 2022, 106 : 462 - 466
  • [38] Topics in sub-Riemannian geometry
    Agrachev, A. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2016, 71 (06) : 989 - 1019
  • [39] Riemannian approximation in Carnot groups
    Domokos, Andras
    Manfredi, Juan J.
    Ricciotti, Diego
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (05) : 1139 - 1154
  • [40] Characterizations of Hamiltonian geodesics in sub-riemannian geometry
    Alcheikh M.
    Orro P.
    Pelletier F.
    Journal of Dynamical and Control Systems, 1997, 3 (3) : 391 - 418